Enzymes Production From Food Waste and Their Application

Author(s):  
Vismaya N. Kumar ◽  
Sharrel Rebello ◽  
Sindhu Raveendran ◽  
Binod Parameswaran ◽  
Ashok Pandey ◽  
...  

The chapter reviews the fermentation-based production of industrially important enzymes from food waste (FW). Nearly one-third of the food produced globally is wasted and poses serious problems regarding its disposal. A number of dumping systems have been developed in the nations worldwide which has later become a threat to the environment. This problem is both of an environmental and economic concern. Recent developments in the area have revealed the application of bioremediation as the best way to dispose food waste. Composting and anaerobic digestion of the organic waste are gaining importance for the better use of household-level waste rather than just dumping it in landfill sites. This chapter focuses mainly on the different types of FW, its disposal techniques, optimization of the fermentation process for the production of different industrially valued enzymes like amylases, cellulases, pectinases, proteases, phytases, and a few others using a wide range of microorganisms from different types of food waste like kitchen waste and food processing waste.

2021 ◽  
Vol 13 (4) ◽  
pp. 2185
Author(s):  
Harold Leverenz ◽  
Russel Adams ◽  
Jessica Hazard ◽  
George Tchobanoglous

The state of California has passed legislation to divert organic materials from landfills to reduce the emission of methane to the atmosphere. A large amount of this source separated organic (SSO) material is expected to be used as a feedstock for anaerobic digestion processes. Based on a review of properties for likely SSO feedstocks, it is clear that while SSO are high in volatile solids, they are also concentrated sources of nutrients (principally, ammonium). When SSO feedstocks are digested, these nutrients are released into the digestate, where ammonium can cause problems both within the digester and in downstream treatment processes. The focus of this paper is on the performance of two pilot studies designed to remove ammonia from a digester effluent. The process used in the study is a thermal stripping column with tray configuration, operating under a vacuum. In the first study, food waste digestate was treated as a slurry in the stripping column with and without NaOH addition. At process temperatures near 90 °C, the performance with and without caustic was similar. In the second study, centrate from a co-digestion facility, that blends food processing waste with wastewater process solids, was treated in the same thermal stripping column under the same conditions and without chemical addition. The results from both studies, which can be described using the same performance curves, are presented and discussed in this paper.


Author(s):  
Tomáš Vítěz ◽  
Tomáš Koutný ◽  
Martin Šotnar ◽  
Jan Chovanec

Due to the strict legislation currently in use for landfilling, anaerobic digestion has a strong potential as an alternative treatment for biodegradable waste. Coffee is one of the most consumed beverages in the world and spent coffee grounds (SCG) are generated in a considerable amount as a processing waste during making the coffee beverage. Chemical composition of SCG, presence of polysaccharides, proteins, and minerals makes from the SCG substrates with high biotechnological value, which might be used as valuable input material in fermentation process. The methane production ranged from 0.271–0.325 m3/kg dry organic matter.


2006 ◽  
Vol 54 (2) ◽  
pp. 19-24 ◽  
Author(s):  
F. Hernon ◽  
C. Forbes ◽  
E. Colleran

Large quantities of biodegradable food waste in the form of fruit and vegetables are still being deposited in landfill sites in Ireland. The development of an anaerobic digestion process using fermentative species which degrade the carbohydrate-rich waste could divert the food waste from landfills. We identified fermentative species grown on glucose and sucrose at mesophilic and thermophilic temperatures using molecular biology techniques. The dominating fermentative bacteria of the mesophilic sludge were of the Bacteroidetes and Spirochaetes classes. Although both groups of bacteria are typically fermentative their substrate range appears to be limited. The dominating fermentative bacteria in the thermophilic sludge was Thermoanaerobacterium aotearoense of the Clostridia class. The indications are that Thermoanaerobacterium aotearoense may be highly suitable to biodegrade a carbohydrate-rich influent feed due to its possibly very rapid growth rate and also an extensive substrate range.


2013 ◽  
Vol 130 ◽  
pp. 375-385 ◽  
Author(s):  
Nazlina Haiza Mohd Yasin ◽  
Tabassum Mumtaz ◽  
Mohd Ali Hassan ◽  
Nor'Aini Abd Rahman

2021 ◽  
Author(s):  
Michał Misiak ◽  
Małgorzata Sobol-Kwapińska ◽  
Marta Kowal ◽  
Lidia Wojtycka

Measuring food wasting behaviour at the consumer level is challenging. Most existing methods focus on food wasting at the household level, which in turn limits the possibility to study the situational and individual factors shaping food wasting behaviour in a single person. To fill this gap, we conducted a series of pre-registered studies in which we developed the Food Wasting Behaviours Questionnaire (FWBQ), an inexpensive method suitable for assessing and monitoring food wasting behaviour at the single-person level. We found that a wide range of behaviours associated with food wasting could be narrowed down to five distinctive basic categories: (1) discarding food because of its’ unpalatability; (2) preventing food waste through buying only the necessities; (3) preventing food waste through planning meals and groceries; (4) preventing food waste through sharing food with others; and (5) preventing food waste through feeding animals. The FWBQ allowed us to investigate the socio-economic factors that influence food wasting behaviour, such as food insecurity. Furthermore, because we started our research programme before the pandemic, we were able to conduct a natural experiment and observe that people changed their food wasting behaviour during the pandemic. Finally, we found that FWBQ allowed for predicting the amount of wasted meat, dairy and bakery products. In summary, we have demonstrated the potential utility of the FWBQ, an inexpensive and easy-to-use method for predicting the factors and antecedents of food wasting behaviour.


2020 ◽  
pp. 140-148
Author(s):  
Md. Kumail Naqvi ◽  
Mrinal Anthwal ◽  
Ravindra Kumar

Biogas is the product of anaerobic vitiation of biodegradable matter. This paper focuses on the need of alternative and green sources of energy at a household level and how biogas produced from the everyday organic waste has the potential and possibility to replace LPG cylinders at houses, shops etc. and empower us to step towards an eco-friendly future. The purpose this small-scale experiment has been to find the perfect input matter that is easy to acquire and which produces the maximum amount of gas from minimum input and within small period of waste retention. Four different types of input waste material containing different quantities of cow dung and kitchen food waste were studied through individual experimental setups. Waste was mixed and kept at room temperature and the pH and total solid concentration of the samples were recorded on regular intervals. From the experiment it was found that the optimum yield of biogas at a small scale, based on the parameters such as retention period, pH and total solid con-centration can be obtained by the use of food waste form households and kitchens. The exact composition has been discussed in this paper. The energy generated by the small-scale generator has also been compared to that of an LPG cylinder and an LPG replacement model has also been presented.


2020 ◽  
Vol 21 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Ana P. dos Santos ◽  
Tamara G. de Araújo ◽  
Gandhi Rádis-Baptista

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.


Sign in / Sign up

Export Citation Format

Share Document