A Survey of Approaches for Estimating Meteorological Visibility Distance Under Foggy Weather Conditions

Author(s):  
Faouzi Kamoun ◽  
Hazar Chaabani ◽  
Fatma Outay ◽  
Ansar-Ul-Haque Yasar

The immaturity of fog abatement technologies for highway usage has led to growing interest towards developing intelligent transportation systems that are capable of estimating meteorological visibility distance under foggy weather conditions. This capability is crucial to support next-generation cooperative situational awareness and collision avoidance systems as well as onboard driver assistance systems. This chapter presents a survey and a comprehensive taxonomy of daytime visibility distance estimation approaches based on a review and synthesis of the literature. The proposed taxonomy is both comprehensive (i.e., captures a wide spectrum of earlier contributions) and effective (i.e., enables easy comparison among previously proposed approaches). The authors also highlight some open research issues that warrant further investigation.

2021 ◽  
Vol 13 (12) ◽  
pp. 306
Author(s):  
Ahmed Dirir ◽  
Henry Ignatious ◽  
Hesham Elsayed ◽  
Manzoor Khan ◽  
Mohammed Adib ◽  
...  

Object counting is an active research area that gained more attention in the past few years. In smart cities, vehicle counting plays a crucial role in urban planning and management of the Intelligent Transportation Systems (ITS). Several approaches have been proposed in the literature to address this problem. However, the resulting detection accuracy is still not adequate. This paper proposes an efficient approach that uses deep learning concepts and correlation filters for multi-object counting and tracking. The performance of the proposed system is evaluated using a dataset consisting of 16 videos with different features to examine the impact of object density, image quality, angle of view, and speed of motion towards system accuracy. Performance evaluation exhibits promising results in normal traffic scenarios and adverse weather conditions. Moreover, the proposed approach outperforms the performance of two recent approaches from the literature.


2019 ◽  
Vol 11 (18) ◽  
pp. 4989 ◽  
Author(s):  
Wei Yu ◽  
Hua Bai ◽  
Jun Chen ◽  
Xingchen Yan

The rapid development of cities has brought new challenges and opportunities to traditional traffic management. The usage of smart cards promotes the upgrading of intelligent transportation systems, and also produces considerable big data. As an important part of the urban comprehensive transportation system, Nanjing metro has more than 1 million inbound and outbound records of traffic smart cards used by residents every day. How to process these traffic data and present them visually is an urgent problem in modern traffic management. In this study, five working days with normal weather conditions in Nanjing were selected, and the swiping records of the smart cards were extracted, and the space–time characteristics were analyzed. In terms of time analysis, this research analyzed the 24-h fluctuation of daily average passenger flow, peak hour coefficient of passenger flow, 24-h fluctuation of passenger flow on different metro lines, passenger flow intensity on different metro lines and passenger flow comparison at different stations. In spatial analysis, this study uses thermodynamic charts to represent the inflow and outflow of passengers at different stations during early and evening peak periods. The analysis results and visualized images directly reflect the area where Nanjing metro congestion is located, and also shows the commuting characteristics of residents. It can solve the problem of urban congestion, carry out the rational layout of urban functional areas, and promote the sustainable development of people and cities.


2021 ◽  
pp. 2040-2052
Author(s):  
Mustafa Najm Abdullah ◽  
Yousra Hussein Ali

The importance of efficient vehicle detection (VD) is increased with the expansion of road networks and the number of vehicles in the Intelligent Transportation Systems (ITS). This paper proposes a system for detecting vehicles at different weather conditions such as sunny, rainy, cloudy and foggy days. The first step to the proposed system implementation is to determine whether the video’s weather condition is normal or abnormal. The Random Forest (RF) weather condition classification was performed in the video while the features were extracted for the first two frames by using the Gray Level Co-occurrence Matrix (GLCM). In this system, the background subtraction was applied by the mixture of Gaussian 2 (MOG 2) then applying a number of pre-processing operations, such as Gaussian blur filter, dilation, erosion, and threshold. The main contribution of this paper is to propose a histogram equalization technique for complex weather conditions instead of a Gaussian blur filter for improving the video clarity, which leads to increase detection accuracy. Based on the previous steps, the system defines each region in the frame expected to contain vehicles. Finally, Support Vector Machine (SVM) classifies the defined regions into a vehicle or not.  As compared to the previous methods, the proposed system showed high efficiency of about 96.4% and ability to detect vehicles at different weather conditions.


Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 725 ◽  
Author(s):  
Fernando Hermosillo-Reynoso ◽  
Deni Torres-Roman ◽  
Jayro Santiago-Paz ◽  
Julio Ramirez-Pacheco

Lane detection for traffic surveillance in intelligent transportation systems is a challenge for vision-based systems. In this paper, a novel pixel-entropy based algorithm for the automatic detection of the number of lanes and their centers, as well as the formation of their division lines is proposed. Using as input a video from a static camera, each pixel behavior in the gray color space is modeled by a time series; then, for a time period τ , its histogram followed by its entropy are calculated. Three different types of theoretical pixel-entropy behaviors can be distinguished: (1) the pixel-entropy at the lane center shows a high value; (2) the pixel-entropy at the lane division line shows a low value; and (3) a pixel not belonging to the road has an entropy value close to zero. From the road video, several small rectangle areas are captured, each with only a few full rows of pixels. For each pixel of these areas, the entropy is calculated, then for each area or row an entropy curve is produced, which, when smoothed, has as many local maxima as lanes and one more local minima than lane division lines. For the purpose of testing, several real traffic scenarios under different weather conditions with other moving objects were used. However, these background objects, which are out of road, were filtered out. Our algorithm, compared to others based on trajectories of vehicles, shows the following advantages: (1) the lowest computational time for lane detection (only 32 s with a traffic flow of one vehicle/s per-lane); and (2) better results under high traffic flow with congestion and vehicle occlusion. Instead of detecting road markings, it forms lane-dividing lines. Here, the entropies of Shannon and Tsallis were used, but the entropy of Tsallis for a selected q of a finite set achieved the best results.


2007 ◽  
Vol 13 (3) ◽  
pp. 627-636
Author(s):  
Edna Mrnjavac ◽  
Robert Marsanić

The rapid growth and development of motorisation combined with relatively small investments made to improving transportation infrastructure in cities, as well as in tourism destinations, has led to serious problems in the unobstructed movement of vehicles in public traffic areas. Traffic congestion on roadways, in ferryboat ports and at state borders during the summer months and year-round lines of cars going to or returning from work are a regular presence in traffic in most urban and tourism destinations in Croatia, as well as in the rest of Europe. Intelligent transportation systems (ITS) can be implemented in urban and tourism centres, which, for example, have no opportunity for increasing the capacity of their traffic networks by constructing new, or expanding existing, transportation infrastructure, and no opportunity for increasing parking capacities. The only solution would be to optimise traffic networking by introducing intelligent technologies. Intelligent transportation systems and services represent a coupling of information and telecommunication technologies with transportation means and infrastructure to ensure greater efficiency in the mobility of people and goods. ITS implementation helps to provide better information to motorists and travellers (tourists); improve traffic and tourist flows, cargo transportation, public passenger-transportation; facilitate the work of emergency services; enable electronic traffic-related payments; enhance the security of people in road traffic; and monitor weather conditions and the environment. To motorists the system provides guidance to roads on which traffic is less intense, guidance to available parking spaces, and guidance, for example, to a good restaurant or interesting tourist attraction. his paper focuses, in particular, on ITS application in city and tourism destinations in connection with parking problems. Guiding vehicles to the closest vacant parking space helps to reduce traffic congestion, reduce the amount of time lost in searching and increase the occupancy rate of car-parks


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 560 ◽  
Author(s):  
Amira Mimouna ◽  
Ihsen Alouani ◽  
Anouar Ben Khalifa ◽  
Yassin El Hillali ◽  
Abdelmalik Taleb-Ahmed ◽  
...  

A reliable environment perception is a crucial task for autonomous driving, especially in dense traffic areas. Recent improvements and breakthroughs in scene understanding for intelligent transportation systems are mainly based on deep learning and the fusion of different modalities. In this context, we introduce OLIMP: A heterOgeneous Multimodal Dataset for Advanced EnvIronMent Perception. This is the first public, multimodal and synchronized dataset that includes UWB radar data, acoustic data, narrow-band radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized frames, presenting four categories: pedestrian, cyclist, car and tram. The dataset includes various challenges related to dense urban traffic such as cluttered environment and different weather conditions. To demonstrate the usefulness of the introduced dataset, we propose a fusion framework that combines the four modalities for multi object detection. The obtained results are promising and spur for future research.


2021 ◽  
Vol 13 (24) ◽  
pp. 13966
Author(s):  
Muhammad Arif ◽  
Venkatesan Dhilip Kumar ◽  
Loganathan Jayakumar ◽  
Ioan Ungurean ◽  
Diana Izdrui ◽  
...  

The Internet of Vehicles (IoV) is an important idea in developing intelligent transportation systems and self-driving cars. Vehicles with various wireless networking options can communicate both inside and outside the vehicles. IoVs with cognitive radio (CR) enable communication between vehicles in a variety of communication scenarios, increasing the rate of data transfer and bandwidth. The use of CR can meet the future need for quicker data transport between vehicles and infrastructure (V2I). Vehicles with CR capabilities on VANET have a different appearance than regular VANET vehicles. This paper aims to develop effective spectrum management for CR-equipped automobiles. An improved channel decision model has been proposed with proven outcomes to boost the pace of transmission, eliminate end-to-end delays, and minimize the number of handoffs. Many high-bandwidth channels will be used in the near future to communicate large-sized multimedia content between vehicles and roadside units (RSU) for both entertainment and safety purposes. Co-operative sensing promotes energy-constrained CR vehicles for sensing a wide spectrum, resulting in high-quality communication channels for requesting vehicles. Our research on the CR-VANET focuses on channel decision instead of spectrum sensing and it differs from previous studies. We used the DAHP–TOPSIS model under multi-criteria decision analysis (MCDA), a sub-domain of operations research, to boost profits, i.e., transmission rate with less computing time. We constructed a test-bed in MATLAB and carried out several analyses to demonstrate that the suggested model performs better than other parallel MCDA models because there has been a limited amount of research work conducted with CR-VANET


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2491
Author(s):  
Mauro Tropea ◽  
Angelo Arieta ◽  
Floriano De Rango ◽  
Francesco Pupo

Vehicle positioning is becoming an important issue related to Intelligent Transportation Systems (ITSs). Novel vehicles and autonomous vehicles need to be localized under different weather conditions and it is important to have a reliable positioning system to track vehicles. Satellite navigation systems can be a key technology in providing global coverage and providing localization services through many satellite constellations such as GPS, GLONASS, Galileo and so forth. However, the modeling of positioning and localization systems under different weather conditions is not a trivial objective especially considering different factors such as receiver sensitivity, dynamic weather conditions, propagation delay and so forth. This paper focuses on the use of simulators for performing different kinds of tests on Global Navigation Satellite System (GNSS) systems in order to reduce the cost of the positioning testing under different techniques or models. Simulation driven approach, combined with some specific hardware equipment such as receivers and transmitters can characterize a more realistic scenario and the simulation can consider other aspects that could be complex to really test. In this work, the main contribution is the introduction of the Troposphere Collins model in a GNSS simulator for VANET applications, the GPS-SDR-SIM software. The use of the Collins model in the simulator allows to improve the accuracy of the simulation experiments throughout the reduction of the receiver errors.


Sign in / Sign up

Export Citation Format

Share Document