Modeling and Synthesis of Realistic Visual Speech in 3D

2011 ◽  
pp. 266-294
Author(s):  
Gregor A. Kalberer ◽  
Pascal Müller ◽  
Luc Van Gool

The problem of realistic face animation is a difficult one. This is hampering a further breakthrough of some high-tech domains, such as special effects in the movies, the use of 3D face models in communications, the use of avatars and likenesses in virtual reality, and the production of games with more subtle scenarios. This work attempts to improve on the current state-of-the-art in face animation, especially for the creation of highly realistic lip and speech-related motions. To that end, 3D models of faces are used and — based on the latest technology — speech-related 3D face motion will be learned from examples. Thus, the chapter subscribes to the surging field of image-based modeling and widens its scope to include animation. The exploitation of detailed 3D motion sequences is quite unique, thereby narrowing the gap between modeling and animation. From measured 3D face deformations around the mouth area, typical motions are extracted for different “visemes”. Visemes are the basic motion patterns observed for speech and are comparable to the phonemes of auditory speech. The visemes are studied with sufficient detail to also cover natural variations and differences between individuals. Furthermore, the transition between visemes is analyzed in terms of co-articulation effects, i.e., the visual blending of visemes as required for fluent, natural speech. The work presented in this chapter also encompasses the animation of faces for which no visemes have been observed and extracted. The “transplantation” of visemes to novel faces for which no viseme data have been recorded and for which only a static 3D model is available allows for the animation of faces without an extensive learning procedure for each individual.

2021 ◽  
pp. 3-8
Author(s):  
А.Г. Аксенов ◽  
А.В. Сибирев

Степень технологической и технической зависимости отечественных производителей овощных культур от зарубежных производителей с.-х. техники, а также их техническая оснащенность специализированными машинами объясняется высокими затратами на производство овощей, особенно на уборку, что при общем дефиците ручного труда приводит к сокращению площадей, нарушению технологии выращивания и соответственно снижению урожайности. Цель исследований – определить современное состояние технологического и технического обеспечения производства овощных культур в Российской Федерации. Для достижения поставленной цели использовали методологию системного анализа и синтеза, математической статистики, численные методы решения аналитических зависимостей. Статистические исследования современного состояния технического обеспечения производства овощей в России могут служить основой для построения модели и разработки концептуальных принципов модернизации технологического и технического обеспечения работ в овощеводстве. Определена потребность товаропроизводителей в современных высокотехнологичных комплексах машин для производства овощных культур. Проведенные статистические исследования позволили оценить современное состояние с.-х. машиностроения по выпуску необходимого для товаропроизводителей количества машин. Повышение объемов производства овощной продукции неразрывно коррелирует с уровнем технического обеспечения отрасли овощеводства в целом, что подтверждает уровень локализации с.-х. машиностроения РФ, а также Беларуси и Казахстана, где с.-х. машиностроение представлено широкой номенклатурой предприятий, выпускающих комплексы машин от предпосадочной обработки почвы до послеуборочной обработки товарной продукции. Для возрождения с.-х. машиностроения и развития рынка средств механизации аграрного производства определены основные механизмы обновления парка сельхозтехники – преимущественно привлечением кредитных ресурсов коммерческих банков и лизинговых компаний. Кроме того, интенсивность ведения сельского хозяйства в современных условиях производства невозможна без высокого уровня насыщения машинно-технологических комплексов средствами интеллектуализации. Получать качественную конкурентоспособную продукцию можно только при использовании современных высокопроизводительных машин, обеспечивающих совмещение технологических операций, в конструкциях которых заложены системы автоматизированного управления технологическими процессами, учета почвенного плодородия, обеспечения экологической чистоты агроландшафтов. The degree of technological and technical dependence of domestic producers of vegetable crops on foreign producers of agricultural machinery, as well as their technical equipment with specialized machines, is explained by the high costs of vegetable production, especially for harvesting, which, with a general shortage of manual labor, leads to a reduction in area, disruption of cultivation technology and, accordingly, a decrease in yield. The purpose of the research is to determine the current state of technological and technical support for the production of vegetable crops in the Russian Federation. To achieve this purpose, we used the methodology of system analysis and synthesis, mathematical statistics, numerical methods for solving analytical dependencies. Statistical studies of the current state of technical support for vegetable production in Russia can serve as a basis for building a model and developing conceptual principles for modernizing technological and technical support for work in vegetable growing. The need of commodity producers for modern high-tech complexes of machines for the production of vegetable crops is determined. The conducted statistical studies made it possible to assess the current state of agricultural engineering for the production of the number of machines necessary for commodity producers. The increase in the production of vegetable products is inextricably correlated with the level of technical support for the vegetable growing industry as a whole, which confirms the level of localization of agricultural machinery in the Russian Federation, as well as in Belarus and Kazakhstan, where agricultural machinery is represented by a wide range of enterprises that produce complexes of machines from pre-planting tillage to post-harvest processing of commercial products. For the revival of agricultural machinery and the development of the market of agricultural production mechanization tools, the main mechanisms for updating the agricultural machinery fleet are determined-mainly by attracting credit resources from commercial banks and leasing companies. In addition, the intensity of agriculture in modern production conditions is impossible without a high level of saturation of machine-technological complexes with means of intellectualization. It is possible to obtain high-quality competitive products only with the use of modern high-performance machines that ensure the combination of technological operations, in the designs of which there are systems for automated control of technological processes, accounting for soil fertility, ensuring environmental cleanliness of agricultural landscapes. Key words: vegetable growing, vegetable seeders, transplanters, vegetable harvesting equipment.


Author(s):  
Катерина Копішинська ◽  
Катерина Зінченко

The research is devoted to the substantiation of the necessity of innovative transformations of the value chain of pharmaceutical enterprises. The current state of the international pharmaceutical market and its development scenarios developed by the WTO were analyzed, taking into account the changes caused by the COVID-19 coronavirus pandemic. The typology of value chains is considered and their element-by-element characteristics are given. A new, modern model of interaction in the chain of value creation of products is proposed. The substantiation of efficiency of creation of such chains is given. Based on the correlation analysis, the presence of a linear relationship between the indicators of Pharmaceutical R&D Spend and Revenue was established. To maximize the effect of R&D costs, pharmaceutical companies are recommended to carry out innovative transformations of the value chain, involving external manufacturers of high-tech devices, applications, etc.


1997 ◽  
pp. 247-258 ◽  
Author(s):  
Thierry Guiard-Marigny ◽  
Ali Adjoudani ◽  
Christian Benoît

TRAUMA ◽  
2021 ◽  
Vol 22 (3) ◽  
pp. 12-19
Author(s):  
A.N. Kosiakov ◽  
A.Ye. Loskutov ◽  
K.A. Hrebennikov ◽  
A.V. Miloserdov ◽  
Ye.M. Fedin ◽  
...  

Background. Additive technologies are increasingly making their way from university laboratories and high-tech industries into routine clinical practice and even into our everyday lives. Any enthusiast, having a PC and a 3D printer at his or her disposal, can create any physical object — from children’s toys to works of art. The presence on the market of a wide range of software pro-ducts, equipment, and consumables along with the data from mo-dern diagnostic methods, a high level of training and cooperation between doctors and engineers provide practical medicine with unprecedented opportunities. We are finally able to fully customize our treatment and diagnostic procedures: to perform precise preoperative planning; to draw up a detailed plan of the operation; to rehearse the intervention on full-scale anatomical prototypes using a standard tool; to conduct the surgery as quickly and atraumatically as possible; to minimize risks; to ensure the optimal functional result and to manufacture and install customized implants in the most difficult cases. The purpose was to draw the attention of our distinguished colleagues to the aspects of application of additive technologies in modern orthopaedic practice, to introduce them into the history and current state of medical prototyping, as well as to share technological nuances with them. Materials and methods. While writing this article, we incorporated the data of recent publications in specialized domestic and foreign periodicals, several monographs, materials from thematic conferences, the results of informal conversations with colleagues in the operating rooms, at the computer and production site, as well as our own experience (over 200 cases of prototyping). Conclusions. The availability of equipment, software, and consumables allows for the introduction of additive technology into the everyday practice of nearly every modern orthopaedic and trauma clinic.


2019 ◽  
pp. 457-475
Author(s):  
Min Jeong Song ◽  
Euna Ha ◽  
Sang-Kwon Goo ◽  
JaeKyung Cho

This article describes how the implementation of 3D printing in classrooms has brought many opportunities to educators as it provides affordability and accessibility in creating and customizing teaching aids. The study reports on the process of fabricating teaching aids for architecture education using 3D printing technologies. The practice-based research intended to illustrate the making process from initial planning, 3D modeling to 3D printing with practical examples, and addresses the potential induced by the technologies. Based on the investigation into the current state of 3D printing technologies in education, limitations were identified before the making process. The researchers created 3D models in both digital and tangible forms and the process was documented in textual and pictorial formats. It is expected that the research findings will serve as a guideline for other educators to create 3D printed teaching aids, particularly architectural forms.


2020 ◽  
Vol 84 (4) ◽  
pp. 403-405
Author(s):  
V. V. Rozanov ◽  
I. V. Matveichuk ◽  
A. P. Chernyaev ◽  
N. A. Nikolaeva ◽  
S. A. Krasnov

2019 ◽  
Vol 27 (4) ◽  
pp. 753-760
Author(s):  
Marina S. Reshetnikova

Today the Chinese economy has rapidly begun the transition to a new stage of development. Its basis is high-tech production and national breakthrough technologies. This process happens due to the transformation of the government strategy in the direction of scaling up innovation through the inclusion of small and medium enterprises. China has been able to raise venture investments for its new development plan. However, since 2016, the rapid growth of the Chinese venture market has raised many concerns. The purpose of the study was to analyze and assess the current state of China's venture capital market. The research proved that, despite signs of overheating, it is still premature to talk about the formation of a “bubble” in the Chinese venture market. The article concludes with a discussion that China is transforming itself again and that the next wave of innovation and private entrepreneurship will be the wave of the future, with substantial global consequences.


Sign in / Sign up

Export Citation Format

Share Document