Social Factors and Interface Design Guidelines

Author(s):  
Zhe Xu ◽  
David John ◽  
Anthony C. Boucouvalas

Designing an attractive user interface for Internet communication is the objective of every software developer. However, it is not an easy task as the interface will be accessed by an uncertain number of users with various purposes. To interact with users, text, sounds, images, and animations can be provided according to different situations. Originally, text was the only medium available for a user to communicate over the Internet. With technology development, multimedia channels (e.g., video and audio) emerged into the online context. Individuals’ sociability may influence human behaviour. Some people prefer a quiet environment and others enjoy more liveliness. On the other hand, the activity purpose influences the environment preference as well. Following usability principles and task analysis (Badre, 2002; Cato, 2001; Dix, Finlay, Abowd, & Beale, 1998; McCraken & Wolfe, 2004; Neilsen, 2000; Nielsen & Tahir, 2002; Preece, Rogers, & Sharp, 2002), we can predict that business-oriented systems and informal systems will require different types of interfaces: Business systems are concerned with the efficiency of performing tasks, while the effectiveness of informal systems depend more on the user’s satisfaction with the experience of interacting with the system. Suppose you are an Internet application designer; should you provide a vivid and multichannel interface or a concise and clear appearance? When individuals’ sociability and the activity purpose contradict, should the interface design follow the sociability requirement, the purpose of the activity, or even neither of them? To answer these questions, the characteristics of communication interfaces should be examined. For face-to-face communications, sounds, voices, various facial expressions, and physical movements are the most important contributing factors. These features are named physical and social presence (Loomis, Golledge, & Klatzky, 1998). In the virtual world, real physical presence does not exist anymore; however, emotional feelings, group feelings, and other social feelings are existent but vary in quantity. The essential differences of interfaces are the quantity of the presented social feelings. For example, a three-dimensional (3-D) interface may provide more geographical and social feelings than a two-dimensional (2-D) chat room may present. To assess the different feelings that may emerge from different interfaces, a two-dimensional chat room and a three-dimensional chatting environment were developed. The identification of social feelings present in the different interface styles is presented first. Then an experiment that was carried out to measure the influence the activity styles and the individuals’ sociability have on the interface preferences is discussed. The questions raised in this article are “What are the social feelings that may differ between the two interfaces (2-D vs. 3-D)?” and “Will users prefer different interfaces for different types of activities?”

2011 ◽  
Vol 81 (5) ◽  
pp. 856-864 ◽  
Author(s):  
Natalia Zamora ◽  
Jose M. Llamas ◽  
Rosa Cibrián ◽  
Jose L. Gandia ◽  
Vanessa Paredes

Abstract Objective: To assess whether the values of different measurements taken on three-dimensional (3D) reconstructions from cone-beam computed tomography (CBCT) are comparable with those taken on two-dimensional (2D) images from conventional lateral cephalometric radiographs (LCRs) and to examine if there are differences between the different types of CBCT software when taking those measurements. Material and Methods: Eight patients were selected who had both an LRC and a CBCT. The 3D reconstructions of each patient in the CBCT were evaluated using two different software packages, NemoCeph 3D and InVivo5. An observer took 10 angular and 3 linear measurements on each of the three types of record on two different occasions. Results: Intraobserver reliability was high except for the mandibular plane and facial cone (from the LCR), the Na-Ans distance (using NemoCeph 3D), and facial cone and the Ans-Me distance (using InVivo5). No statistically significant differences were found for the angular and linear measurements between the LCRs and the CBCTs for any measurement, and the correlation levels were high for all measurements. Conclusion: No statistically significant differences were found between the angular and linear measurements taken with the LCR and those taken with the CBCT. Neither were there any statistically significant differences between the angular or linear measurements using the two CBCT software packages.


2021 ◽  
Author(s):  
Essam Mohamed S. A. E. A. Dabbour

The combination of horizontal curves with vertical alignments is commonly used in different classifications of highways; either on highway mainstream or on highway interchange ramps. The horizontal curves, combined with vertical alignments, may be single, compound or reverse horizontal curves. The current design guidelines do not adequately investigate vehicle stability on such three-dimensional (3D) alignments. Computer software that simulates vehicle behaviour on different geometrical alignments was employed to investigate vehicle stability on such 3D alignments. It was found that vehicle safety is questionable, especially for larger vehicles on reverse curves associated with vertical alignments. The critical speed, where the vehicle starts to rollover or skid, was found to be close to design speed for those 3D alignments. Design aids were then developed to address the recommended solutions to maintain the margin of safety required.


Author(s):  
Stephen R. Ellis

Virtual environments created through computer graphics are communications media (Licklider et al., 1978). Like other media, they have both physical and abstract components. Paper, for example, is a medium for communication. The paper is itself one possible physical embodiment of the abstraction of a two-dimensional surface onto which marks may be made. The corresponding abstraction for head-coupled, virtual image, stereoscopic displays that synthesize a coordinated sensory experience is an environment. These so-called “virtual reality” media have only recently caught the international public imagination (Pollack, 1989; D’Arcy, 1990; Stewart, 1991; Brehde, 1991), but they have arisen from continuous development in several technical and non-technical areas during the past 25 years (Brooks Jr., 1988; Ellis, 1990; Ellis, et al., 1991, 1993; Kalawsky, 1993). A well designed computer interface affords the user an efficient and effortless flow of information to and from the device with which he interacts. When users are given sufficient control over the pattern of this interaction, they themselves can evolve efficient interaction strategies that match the coding of their communications to the characteristics of their communication channel (Zipf, 1949; Mandelbrot, 1982; Ellis and Hitchcock, 1986; Grudin and Norman, 1991). But successful interface design should strive to reduce this adaptation period by analysis of the user’s task and performance limitations. This analysis requires understanding of the operative design metaphor for the interface in question. The dominant interaction metaphor for the computer interface changed in the 1980’s. Modern graphical interfaces, like those first developed at Xerox PARC (Smith et al., 1982) and used for the Apple Macintosh, have transformed the “conversational” interaction from one in which users “talked” to their computers to one in which they “acted out” their commands in a “desk-top” display. This so called desk-top metaphor provides the users with an illusion of an environment in which they enact wishes by manipulating symbols on a computer screen. Virtual environment displays represent a three-dimensional generalization of the two-dimensional “desk-top” metaphor. These synthetic environments may be experienced either from egocentric or exocentric viewpoints. That is to say, the users may appear to actually be in the environment or see themselves represented as a “You are here” symbol (Levine, 1984) which they can control.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2410
Author(s):  
Jungmin Lee ◽  
Yesol Yun ◽  
Sang Hyun Lee ◽  
Jinyoung Hwang

Hybrid nanotube composite systems with two different types of fillers attract considerable attention in several applications. The incorporation of secondary fillers exhibits conflicting behaviors of the electrical conductivity, which either increases or decreases according to the dimension of secondary fillers. This paper addresses quantitative models to predict the electrical performance in the configuration of two dimensional systems with one-dimensional secondary fillers. To characterize these properties, Monte Carlo simulations are conducted for percolating networks with a realistic model with the consideration of the resistance of conducting NWs, which conventional computational approaches mostly lack from the common assumption of zero-resistance or perfect conducting NWs. The simulation results with nonperfect conductor NWs are compared with the previous results of perfect conductors. The variation of the electrical conductivity reduces with the consideration of the resistance as compared to the cases with perfect conducting fillers, where the overall electrical conductivity solely originates from the contact resistance caused by tunneling effects between NWs. In addition, it is observed that the resistance associated with the case of invariant conductivity with respect to the dimension of the secondary fillers increases, resulting in the need for secondary fillers with the increased scale to achieve the same electrical performance. The results offer useful design guidelines for the use of a two-dimensional percolation network for flexible conducting electrodes.


2003 ◽  
Vol 476 ◽  
pp. 159-177 ◽  
Author(s):  
A. M. GOMILKO ◽  
V. S. MALYUGA ◽  
V. V. MELESHKO

Motivated by the recent paper of Hills & Moffatt (2000), we investigate the Stokes flow in a trihedral corner formed by three mutually orthogonal planes, induced by a non-zero velocity distribution over one of the walls of the corner. It is shown that the local behaviour of the velocity field near the edges of the corner, where a discontinuity of the boundary velocity is assumed, coincides with the Goodier–Taylor solution for a two-dimensional wedge. Analysis of the streamline patterns confirms the existence of eddies near the stationary edge in the flow, induced either by uniform translation of one of the walls of the corner in the direction perpendicular to its bisectrix or by uniform rotation of a side about the vertex of the corner. These flows are shown to be quasi-two-dimensional. If the wall rotates about a centre displaced from the vertex, the induced flow is essentially three-dimensional. In the antisymmetric velocity field, a stagnation line appears composed of stagnation points of different types. Otherwise the three-dimensionality manifests itself in a non-closed spiral shape of the streamlines.


Author(s):  
Michael Knorr ◽  
Lydie Viau ◽  
Yoann Rousselin ◽  
Marek M. Kubicki

The polymeric title compound, [Cu2Br2(C4H8S)2] n , CP1, represents an example of a two-dimensional coordination polymer resulting from reaction of CuBr with tetrahydrothiophene (THT) in MeCN solution. The two-dimensional layers consist of two different types of rhomboid-shaped dinuclear Cu(μ2-Br)2Cu secondary building units (SBUs); one with a quite loose Cu...Cu separation of 3.3348 (10) Å and a second one with a much closer intermetallic contact of 2.9044 (9) Å. These SBUs are interconnected through bridging THT ligands, in which the S atom acts as a four-electron donor bridging each Cu(μ2-Br)2Cu unit in a μ2-bonding mode. In the crystal, the layers are linked by very weak C—H...·Br hydrogen bonds with H...Br distances of 2.95 Å, thus giving rise to a three-dimensional supramolecular network.


Author(s):  
Thomas A. Furness III ◽  
Woodrow Barfield

We understand from the anthropologists that almost from the beginning of our species we have been tool builders. Most of these tools have been associated with the manipulation of matter. With these tools we have learned to organize or reorganize and arrange the elements for our comfort, safety, and entertainment. More recently, the advent of the computer has given us a new kind of tool. Instead of manipulating matter, the computer allows us to manipulate symbols. Typically, these symbols represent language or other abstractions such as mathematics, physics, or graphical images. These symbols allow us to operate at a different conscious level, providing a mechanism to communicate ideas as well as to organize and plan the manipulation of matter that will be accomplished by other tools. However, a problem with the current technology that we use to manipulate symbols is the interface between the human and computer. That is, the means by which we interact with the computer and receive feedback that our actions, thoughts, and desires are recognized and acted upon. Another problem with current computing systems is the format with which they display information. Typically, the computer, via a display monitor, only allows a limited two-dimensional view of the three-dimensional world we live in. For example, when using a computer to design a three dimensional building, what we see and interact with is often only a two-dimensional representation of the building, or at most a so-called 2½D perspective view. Furthermore, unlike the sounds in the real world which stimulate us from all directions and distances, the sounds emanating from a computer originate from a stationary speaker, and when it comes to touch, with the exception of a touch screen or the tactile feedback provided by pressing a key or mouse button (limited haptic feedback to be sure), the tools we use to manipulate symbols are primitive at best. This book is about a new and better way to interact with and manipulate symbols. These are the technologies associated with virtual environments and what we term advanced interfaces. In fact, the development of virtual environment technologies for interacting with and manipulating symbols may represent the next step in the evolution of tools.


Author(s):  
Nikhil Kumar Singh ◽  
Sikha Hota

The paper computes optimal paths for fixed-wing unmanned aerial vehicles with bounded turn radii to follow a series of waypoints with specified directions in a three-dimensional obstacle-filled environment. In the existing literature, it was proved that the optimal path is of circular turn–straight line–circular turn (CSC) type for two consecutive waypoint configurations, when the points are sufficiently far apart and there is no obstacle in the field. The maximum of all minimum turn radii corresponding to all possible two-dimensional circular maneuvers was used for both the initial and final turns to develop the CSC-type paths. But, this paper considers the minimum turn radii for initial and final turns, corresponding to the maneuvering planes and which produces shorter CSC-type paths. In an obstacle-filled environment the shortest path may collide with obstacles, so a strategy is proposed to switch to the next best path that does not collide with obstacles. Using this technique, a series of waypoints is followed in the presence of obstacles of different types, for example, cylindrical, hemispherical, and spherical in shapes with different sizes. Finally, simulation results are presented to show the efficiency of the algorithm for obstacle avoidance. The computation time listed here indicates the potentiality of this algorithm for implementation in real time.


Author(s):  
Derya Davarcı ◽  
Rüştü Gür ◽  
Serap Beşli ◽  
Elif Şenkuytu ◽  
Yunus Zorlu

The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX;X= NO3−, PF6−, ClO4−, CH3PhSO3−, BF4−and CF3SO3−) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n(1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n(2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n(3), [Ag3(HPCP)(CH3PhSO3)3]n(4), [Ag2(HPCP)(CH3CN)(BF4)2]n(5) and {[Ag(HPCP)]·(CF3SO3)}n(6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions ofM/Lratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)–(6), the ligand HPCP shows different coordination modes with AgIions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.62}2{42.610.83}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.26}2{48.66.8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connectedsql/Shubnikov tetragonal plane net with {44.62} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {63.86.12}{63}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connectedfshnet with the point symbol (43.63)2.(46.66.83). The effect of the counteranions on the formation of coordination polymers is discussed in this study.


2007 ◽  
Vol 2007 ◽  
pp. 1-7 ◽  
Author(s):  
Labrini Drakopoulou ◽  
Constantina Papatriantafyllopoulou ◽  
Aris Terzis ◽  
Spyros P. Perlepes ◽  
Evy Manessi-Zoupa ◽  
...  

The 12: 1 reaction of urea (U) with CoI2in EtOH yielded the “clathrate-coordination” compound[CoU6]I2·4U (1). The complex crystallizes in the monoclinic space group P21/c. The lattice constants area= 9.844(4),b= 7.268(3),c= 24.12(1) Å, andβ=98.12(1)∘. The crystal structure determination demonstrates the existence of octahedral[CoU6]2+cations,I-counterions, and two different types (twoU1and twoU2) of hydrogen-bonded, lattice urea molecules. The[CoU6]2+cations and theU1lattice molecules form two-dimensional hydrogen-bonded layers which are parallel to theabplane. TheI-anions are placed above and below each layer, and are hydrogen bonded both toU1molecules and[CoU6]2+cations. EachU2molecule is connected to a[CoU6]2+cation through anN–H⋯Ohydrogen bond resulting in a three-dimensional network. Room temperature magnetic susceptibility and spectroscopic (solid-state UV/Vis, IR, Raman) data of1are discussed in terms of the nature of bonding and the known structure.


Sign in / Sign up

Export Citation Format

Share Document