Use of Remotely Sensed Imagery in Cyber Warfare and Cyber Counterterrorism

Author(s):  
Gang Gong ◽  
Mark R. Leipnik

Remote sensing refers to the acquisition of information at a distance. More specifically, it has come to mean using aerial photographs or sensors on satellites to gather data about features on the surface of the earth. In this article, remote sensing and related concepts are defined and the methods used in gathering and processing remotely sensed imagery are discussed. The evolution of remote sensing, generic applications and major sources of remotely sensed imagery and programs used in processing and analyzing remotely sensed imagery are presented. Then the application of remote sensing in warfare and counterterrorism is discussed in general terms with a number of specific examples of successes and failures in this particular area. Next, the potential for misuse of the increasing amount of high resolution imagery available over the Internet is discussed along with prudent countermeasures to potential abuses of this data. Finally, future trends with respect to this rapidly evolving technology are included.

Author(s):  
Weiwei Jiang ◽  
Henglin Xiao ◽  
Zhan Zhao ◽  
Jianguo Zhou

This paper proposes boundary parallel-like index (BPI) to describe shape features for high-resolution remote sensing image classification. Parallel-like boundary is found to be a discriminating clue which can reveal the shape regularity of segmented objects. Therefore, multi-orientation distance projections were constructed to measure and quantify parallel-like information. The discriminating ability was tested using original and segmented ground objects, respectively. The proposed BPI showed better discrimination for both original and segmented data than for other shape features, especially for buildings. This was also confirmed by the considerably higher accuracy of BPI in building classification experiments of high-resolution remote sensing imagery. It suggests the proposed BPI is useful for building related applications.


2018 ◽  
Vol 10 (9) ◽  
pp. 1409 ◽  
Author(s):  
Sophie Mossoux ◽  
Matthieu Kervyn ◽  
Hamid Soulé ◽  
Frank Canters

Accurate mapping of population distribution is essential for policy-making, urban planning, administration, and risk management in hazardous areas. In some countries, however, population data is not collected on a regular basis and is rarely available at a high spatial resolution. In this study, we proposed an approach to estimate the absolute number of inhabitants at the neighborhood level, combining data obtained through field work with high resolution remote sensing. The approach was tested on Ngazidja Island (Union of the Comoros). A detailed survey of neighborhoods at the level of individual dwellings, showed that the average number of inhabitants per dwelling was significantly different between buildings characterized by a different roof type. Firstly, high spatial resolution remotely sensed imagery was used to define the location of individual buildings, and second to determine the roof type for each building, using an object-based classification approach. Knowing the location of individual houses and their roof type, the number of inhabitants was estimated at the neighborhood level using the data on house occupancy of the field survey. To correct for misclassification bias in roof type discrimination, an inverse calibration approach was applied. To assess the impact of variations in average dwelling occupancy between neighborhoods on model outcome, a measure of the degree of confidence of population estimates was calculated. Validation using the leave-one-out approach showed low model bias, and a relative error at the neighborhood level of 17%. With the increasing availability of high resolution remotely sensed data, population estimation methods combining data from field surveys with remote sensing, as proposed in this study, hold great promise for systematic mapping of population distribution in areas where reliable census data are not available on a regular basis.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


2021 ◽  
Vol 13 (15) ◽  
pp. 2862
Author(s):  
Yakun Xie ◽  
Dejun Feng ◽  
Sifan Xiong ◽  
Jun Zhu ◽  
Yangge Liu

Accurately building height estimation from remote sensing imagery is an important and challenging task. However, the existing shadow-based building height estimation methods have large errors due to the complex environment in remote sensing imagery. In this paper, we propose a multi-scene building height estimation method based on shadow in high resolution imagery. First, the shadow of building is classified and described by analyzing the features of building shadow in remote sensing imagery. Second, a variety of shadow-based building height estimation models is established in different scenes. In addition, a method of shadow regularization extraction is proposed, which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally, we propose a method for shadow length calculation combines with the fish net and the pauta criterion, which means that the large error caused by the complex shape of building shadow can be avoided. Multi-scene areas are selected for experimental analysis to prove the validity of our method. The experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of our method. In addition, we compared our proposed approach with the existing methods, and the results show that the absolute error of our method are reduced by 1.24 m-3.76 m, which can achieve high-precision estimation of building height.


Sign in / Sign up

Export Citation Format

Share Document