Understanding the Impact of Wireless Local Area Networks on Users and Assessing User Satisfaction with Wireless Local Area Networks

Author(s):  
Leida Chen ◽  
Ravi Nath ◽  
Jonathan Cowin

Recently, wireless local area network (WLAN) has gained increasing popularity. WLAN equipment manufacturers and practitioners claimed that WLAN had brought dramatic improvements in the forms of productivity gains and attainment of convenience, flexibility, mobility, and time saving to organizations and their employees. However, very little academic research has been conducted to verify these claims and further our understanding of this new phenomenon. By surveying end-users and managers, this study investigates the impact of WLAN on users and their work. User satisfaction with WLAN is also assessed. This article presents the findings from the study along with a discussion on recent development and future trends of WLAN. Finally, recommendations to researchers, managers, WLAN technology providers and equipment manufacturers are also provided.

Author(s):  
Lei-da Chen

In recent years, the concept of nomadic computing has received considerable attention from the business community. As an early form of nomadic information environment (NIE), wireless local area network (WLAN) has gained tremendous popularity with organizations. Using mostly anecdotal evidences, WLAN equipment manufacturers and practitioners claimed that WLAN brought dramatic improvements in the forms of productivity gains and attainment of convenience, flexibility, mobility, and time saving to organizations and their employees. However, very little academic research has been conducted to verify these claims and further our understanding of this new phenomenon. By surveying end users and managers, this study investigates the impact of WLAN on users and their work. Finally, recommendations to researchers, managers, WLAN technology providers, and equipment manufacturers also are provided.


Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 693
Author(s):  
Kvitoslava Obelovska ◽  
Olga Panova ◽  
Vincent Karovič

The performance of Wireless Local Area Network (WLAN) is highly dependent on the processes that are implemented in the Medium Access Control (MAC) sublayer regulated by the IEEE 802.11 standard. In turn, various parameters affect the performance of the MAC sublayer, the most important of which is the number of stations in the network and the offered load. With the massive growth of multimedia traffic, research of the network performance depending on traffic types is relevant. In this paper, we present the impact of a high-/low-priority traffic ratio on WLAN performance with different numbers of access categories. The simulation results show different impact of high-/low-priority traffic ratio on the performance of the MAC sublayer of wireless LANs depending on different network-sizes and on network conditions. Performance of the large network with two access categories and with the prevalent high-priority traffic is significantly higher than in the case of using four categories on the MAC sublayer. This allows us to conclude that the performance improvement of the large network with the prevalent high-priority traffic can be achieved by an adaptive adjustment of the access categories number on the MAC sublayer.


2021 ◽  
Author(s):  
Hamza Ben Hamadi ◽  
said ghnimi ◽  
Lassaad Latrach ◽  
Philippe Benech ◽  
Ali Gharsallah

Abstract This paper presents the design, simulation and fabrication of a miniaturized wearable dual-band antenna on a semi-flex substrate; she is operable at 2.45/5.8 GHz for wireless local area network applications. The electrical and radiation characteristics of this proposed antenna were obtained by means of a technical of insertion of a slot to tune the operating frequencies. To study the impact of the electromagnetic radiation of the structure of the human body, it is necessary to minimize the back radiation towards the user. Therefore, in this work, a multi-band artificial magnetic conductor (AMC) was placed directly above a dual-band planar inverted F antenna to achieve a miniaturization with excellent radiation performance. The simulation results were designed and simulated using Studio commercial software (CST). A good agreement was achieved between the results of simulation and the experimental. The Comparison of measurement results indicates that the gain improved from 1,84 dB to 3,8 dB, in the lower band, and from 2,4 dB to 4,1 in the upper band, when the antenna is backed by the AMC plane. The front-to-back ratio of the AMC backed PIFA antenna was also enhanced. Then, to ensure that the proposed AMC is harmless to the human body, this prototype was placed on three-layer human tissue cubic model. It was observed that the through inclusion of plane AMC, the peak specific absorption rate (SAR) decreased to 1,45 and 1,1 W/kg at 2,45 and 5.8 GHz, respectively (a reduction of around 3,7 W/kg, compared with an antenna without (AMC).


Author(s):  
Khalid Ali Khan ◽  
Suleyman Malikmyradovich Nokerov

This study aims to optimize a fan-stub slot patch to get better suitability and performance for Citizens Broadband Radio Service (CBRS). The transition from the tedious configuration of slotted patch antenna in fan-stub shape is evaluated. Also, the impact of stub width W, stub length L, and its orientation are tested. Multiple simulation tests ensure the uniqueness in the type of slots or stubs that affect the multiband nature of patch. The optimization of basic fan-stub structure on return loss S11, Voltage Standing Wave Ratio (VSWR), and the operating band at the desired frequency is performed to accommodate the federal and non-federal use of the band. The simulation results show that the designed antenna is technically suitable to cover 4G LTE in CBRS (LTE-43 and LTE-48 band) as well as 5.5 GHz Wireless Local Area Network (WLAN) band of operation.


Author(s):  
Ziyad Khalaf Farej ◽  
Mustafa Mohammad Jasim

The IEEE 802.11n supports high data rate transmissions due its physical layer Multiple Input ‎Multiple Output (MIMO) advanced antenna system and MAC layer enhancement features (frame ‎aggregation and block acknowledgement). As a result this standard is very suitable for multimedia ‎services through its Enhanced Distributed Channel Access (EDCA). This paper focuses on ‎evaluating the Quality of Service (QoS) application on the performance of the IEEE 802.11n ‎random topology WLAN. Three different number of nodes (3, 9 and 18) random topology with one ‎access point are modeled and simulated by using the Riverbed OPNET 17.5 Modular to ‎investigate the Wireless Local Area Network (WLAN) performance for different spatial streams. ‎The result clarified the impact of QoS application and showed that its effect is best at the 18 node ‎number topology. For a 4x4 MIMO, when QoS is applied and with respect to the no QoS ‎application case, simulation results show a maximum improvement of 86.4%, 33.9%, 52.2% and ‎‎68.9% for throughput, delay, data drop and retransmission attempts, respectively. ‎


Author(s):  
K. Raja, Et. al.

The objective of this paper is to identify the intruder of the wireless local area network based on the network and transport layer while accessing the internet within organizations and industries. The Intrusion detection system is the security that attempts to identify anomalies attributes who are trying to misuse a network without authorization and those who have legitimate access to the system but are abusing their privileges. The fact of the existing system deals with a firewall to protect and detect the unauthorized person using Wireless Local Area Network. Since the administrator may block or unblock the intruder based on the priority. This paper presents an enhanced framework, to detect and monitor the anomalies in the wireless sensor networks in an organization or an institution. The proposed approach to detect and filter the intruder in the wireless local area networks. Hence optimize the intrusion detection system in the particular organization or industries. The proposed IDS results are compared with the existing Decision Tree, Naive Bayes, and Random Forest algorithms.


2015 ◽  
Vol 13 ◽  
pp. 181-188
Author(s):  
F. Pfeiffer ◽  
M. Rashwan ◽  
E. Biebl ◽  
B. Napholz

Abstract. Nowadays, customers expect to integrate their mobile electronic devices (smartphones and laptops) in a vehicle to form a wireless network. Typically, IEEE 802.11 is used to provide a high-speed wireless local area network (WLAN) and Bluetooth is used for cable replacement applications in a wireless personal area network (PAN). In addition, Daimler uses KLEER as third wireless technology in the unlicensed (UL) 2.4 GHz-ISM-band to transmit full CD-quality digital audio. As Bluetooth, IEEE 802.11 and KLEER are operating in the same frequency band, it has to be ensured that all three technologies can be used simultaneously without interference. In this paper, we focus on the impact of Bluetooth and IEEE 802.11 as interferer in presence of a KLEER audio transmission.


Sign in / Sign up

Export Citation Format

Share Document