The Application of Machine Learning Technique for Malaria Diagnosis

2012 ◽  
pp. 2035-2043 ◽  
Author(s):  
C. Ugwu ◽  
N. L Onyejegbu ◽  
I. C Obagbuwa

Healthcare delivery in African nations has long been a worldwide issue, which is why the United Nations and World Health Organization seek for ways to alleviate this problem and thereby reduce the number of lives that are lost every year due to poor health facilities and inadequate health care administration. Healthcare delivery concerns are most predominant in Nigeria and it became imperatively clear that the system of medical diagnosis must be automated. This paper explores the potential of machine learning technique (decision tree) in development of a malaria diagnostic system. The decision tree algorithm was used in the development of the knowledge base. Microsoft Access and Java programming language were used for database and user interfaces, respectively. During the diagnosis, symptoms are provided by the patient in the diagnostic system and a match is found in the knowledge base.

Author(s):  
C. Ugwu ◽  
N. L Onyejegbu ◽  
I. C Obagbuwa

Healthcare delivery in African nations has long been a worldwide issue, which is why the United Nations and World Health Organization seek for ways to alleviate this problem and thereby reduce the number of lives that are lost every year due to poor health facilities and inadequate health care administration. Healthcare delivery concerns are most predominant in Nigeria and it became imperatively clear that the system of medical diagnosis must be automated. This paper explores the potential of machine learning technique (decision tree) in development of a malaria diagnostic system. The decision tree algorithm was used in the development of the knowledge base. Microsoft Access and Java programming language were used for database and user interfaces, respectively. During the diagnosis, symptoms are provided by the patient in the diagnostic system and a match is found in the knowledge base.


2010 ◽  
Vol 1 (1) ◽  
pp. 68-77 ◽  
Author(s):  
C. Ugwu ◽  
N. L Onyejegbu ◽  
I. C Obagbuwa

Healthcare delivery in African nations has long been a worldwide issue, which is why the United Nations and World Health Organization seek for ways to alleviate this problem and thereby reduce the number of lives that are lost every year due to poor health facilities and inadequate health care administration. Healthcare delivery concerns are most predominant in Nigeria and it became imperatively clear that the system of medical diagnosis must be automated. This paper explores the potential of machine learning technique (decision tree) in development of a malaria diagnostic system. The decision tree algorithm was used in the development of the knowledge base. Microsoft Access and Java programming language were used for database and user interfaces, respectively. During the diagnosis, symptoms are provided by the patient in the diagnostic system and a match is found in the knowledge base.


2021 ◽  
pp. 1063293X2199180
Author(s):  
Babymol Kurian ◽  
VL Jyothi

A wide reach on cancer prediction and detection using Next Generation Sequencing (NGS) by the application of artificial intelligence is highly appreciated in the current scenario of the medical field. Next generation sequences were extracted from NCBI (National Centre for Biotechnology Information) gene repository. Sequences of normal Homo sapiens (Class 1), BRCA1 (Class 2) and BRCA2 (Class 3) were extracted for Machine Learning (ML) purpose. The total volume of datasets extracted for the process were 1580 in number under four categories of 50, 100, 150 and 200 sequences. The breast cancer prediction process was carried out in three major steps such as feature extraction, machine learning classification and performance evaluation. The features were extracted with sequences as input. Ten features of DNA sequences such as ORF (Open Reading Frame) count, individual nucleobase average count of A, T, C, G, AT and GC-content, AT/GC composition, G-quadruplex occurrence, MR (Mutation Rate) were extracted from three types of sequences for the classification process. The sequence type was also included as a target variable to the feature set with values 0, 1 and 2 for classes 1, 2 and 3 respectively. Nine various supervised machine learning techniques like LR (Logistic Regression statistical model), LDA (Linear Discriminant analysis model), k-NN (k nearest neighbours’ algorithm), DT (Decision tree technique), NB (Naive Bayes classifier), SVM (Support-Vector Machine algorithm), RF (Random Forest learning algorithm), AdaBoost (AB) and Gradient Boosting (GB) were employed on four various categories of datasets. Of all supervised models, decision tree machine learning technique performed most with maximum accuracy in classification of 94.03%. Classification model performance was evaluated using precision, recall, F1-score and support values wherein F1-score was most similar to the classification accuracy.


2021 ◽  
Author(s):  
Jailma Januário da Silva ◽  
Norton Trevisan Roman

In this article, we present a systematic literature review, carried out from February to March 2020, on the application of a machine learning technique to predict student dropout in higher education institutions. Besides describing the protocol followed during our research, which includes the research questions, searched databases and query strings, along with criteria for inclusion and exclusion of articles, we also present our main results, in terms of the attributes used by current research on this theme, along with adopted approaches, specific algorithms, and evalution metrics. The Decision Tree technique is the most used for the construction of models, and accuracy and recall and precision being the most used metric for evaluating models.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
R. Shashikant ◽  
P. Chetankumar

Cardiac arrest is a severe heart anomaly that results in billions of annual casualties. Smoking is a specific hazard factor for cardiovascular pathology, including coronary heart disease, but data on smoking and heart death not earlier reviewed. The Heart Rate Variability (HRV) parameters used to predict cardiac arrest in smokers using machine learning technique in this paper. Machine learning is a method of computing experience based on automatic learning and enhances performances to increase prognosis. This study intends to compare the performance of logistical regression, decision tree, and random forest model to predict cardiac arrest in smokers. In this paper, a machine learning technique implemented on the dataset received from the data science research group MITU Skillogies Pune, India. To know the patient has a chance of cardiac arrest or not, developed three predictive models as 19 input feature of HRV indices and two output classes. These model evaluated based on their accuracy, precision, sensitivity, specificity, F1 score, and Area under the curve (AUC). The model of logistic regression has achieved an accuracy of 88.50%, precision of 83.11%, the sensitivity of 91.79%, the specificity of 86.03%, F1 score of 0.87, and AUC of 0.88. The decision tree model has arrived with an accuracy of 92.59%, precision of 97.29%, the sensitivity of 90.11%, the specificity of 97.38%, F1 score of 0.93, and AUC of 0.94. The model of the random forest has achieved an accuracy of 93.61%, precision of 94.59%, the sensitivity of 92.11%, the specificity of 95.03%, F1 score of 0.93 and AUC of 0.95. The random forest model achieved the best accuracy classification, followed by the decision tree, and logistic regression shows the lowest classification accuracy.


Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Sign in / Sign up

Export Citation Format

Share Document