Non-Topical Classification of Query Logs Using Background Knowledge

Author(s):  
Isak Taksa ◽  
Sarah Zelikovitz ◽  
Amanda Spink

Background knowledge has been actively investigated as a possible means to improve performance of machine learning algorithms. Research has shown that background knowledge plays an especially critical role in three atypical text categorization tasks: short-text classification, limited labeled data, and non-topical classification. This chapter explores the use of machine learning for non-hierarchical classification of search queries, and presents an approach to background knowledge discovery by using information retrieval techniques. Two different sets of background knowledge that were obtained from the World Wide Web, one in 2006 and one in 2009, are used with the proposed approach to classify a commercial corpus of web query data by the age of the user. In the process, various classification scenarios are generated and executed, providing insight into choice, significance and range of tuning parameters, and exploring impact of the dynamic web on classification results.

2012 ◽  
pp. 598-615
Author(s):  
Isak Taksa ◽  
Sarah Zelikovitz ◽  
Amanda Spink

Background knowledge has been actively investigated as a possible means to improve performance of machine learning algorithms. Research has shown that background knowledge plays an especially critical role in three atypical text categorization tasks: short-text classification, limited labeled data, and non-topical classification. This chapter explores the use of machine learning for non-hierarchical classification of search queries, and presents an approach to background knowledge discovery by using information retrieval techniques. Two different sets of background knowledge that were obtained from the World Wide Web, one in 2006 and one in 2009, are used with the proposed approach to classify a commercial corpus of web query data by the age of the user. In the process, various classification scenarios are generated and executed, providing insight into choice, significance and range of tuning parameters, and exploring impact of the dynamic web on classification results.


2012 ◽  
pp. 467-482
Author(s):  
Isak Taksa ◽  
Sarah Zelikovitz ◽  
Amanda Spink

Search query classification is a necessary step for a number of information retrieval tasks. This chapter presents an approach to non-hierarchical classification of search queries that focuses on two specific areas of machine learning: short text classification and limited manual labeling. Typically, search queries are short, display little class specific information per single query and are therefore a weak source for traditional machine learning. To improve the effectiveness of the classification process the chapter introduces background knowledge discovery by using information retrieval techniques. The proposed approach is applied to a task of age classification of a corpus of queries from a commercial search engine. In the process, various classification scenarios are generated and executed, providing insight into choice, significance and range of tuning parameters.


Author(s):  
Isak Taksa ◽  
Sarah Zelikovitz ◽  
Amanda Spink

Search query classification is a necessary step for a number of information retrieval tasks. This chapter presents an approach to non-hierarchical classification of search queries that focuses on two specific areas of machine learning: short text classification and limited manual labeling. Typically, search queries are short, display little class specific information per single query and are therefore a weak source for traditional machine learning. To improve the effectiveness of the classification process the chapter introduces background knowledge discovery by using information retrieval techniques. The proposed approach is applied to a task of age classification of a corpus of queries from a commercial search engine. In the process, various classification scenarios are generated and executed, providing insight into choice, significance and range of tuning parameters.


2020 ◽  
Author(s):  
Senol Isci ◽  
Derya Sema Yaman Kalender ◽  
Firat Bayraktar ◽  
Alper Yaman

ABSTRACTAccurate classification of Cushing’s Syndrome (CS) plays a critical role in providing early and correct diagnosis of CS that may facilitate treatment and improve patient outcomes. Diagnosis of CS is a complex process, which requires careful and concurrent interpretation of signs and symptoms, multiple biochemical test results, and findings of medical imaging by physicians with a high degree of specialty and knowledge to make correct judgments. In this article, we explore the state of the art machine learning algorithms to demonstrate their potential as a clinical decision support system to analyze and classify CS in order to facilitate the diagnosis, prognosis, and treatment of CS. Prominent algorithms are compared using nested cross-validation and various class comparison strategies including multiclass, one vs. all, and one vs. one binary classification. Our findings show that Random Forest (RF) algorithm is most suitable for the classification of CS. We demonstrate that the proposed approach can classify CS subjects with an average accuracy of 92% and an average F1 score of 91.5%, depending on the class comparison strategy and selected features. RF-based one vs. all binary classification model achieves sensitivity of 97.6%, precision of 91.1%, and specificity of 87.1% to discriminate CS from non-CS on the test dataset. RF-based multiclass classification model achieves average per class sensitivity of 91.8%, average per class specificity of 97.1%, and average per class precision of 92.1% to classify different subtypes of CS on the test dataset. Clinical performance evaluation suggests that the developed models can help improve physician’s judgment in diagnosing CS.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


2021 ◽  
Vol 9 (5) ◽  
pp. 1034
Author(s):  
Carlos Sabater ◽  
Lorena Ruiz ◽  
Abelardo Margolles

This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.


Author(s):  
Bonthala Prabhanjan Yadav ◽  
Sukhaveerji Ghate ◽  
A Harshavardhan ◽  
G Jhansi ◽  
Komuravelly Sudheer Kumar ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 4728
Author(s):  
Zinhle Mashaba-Munghemezulu ◽  
George Johannes Chirima ◽  
Cilence Munghemezulu

Rural communities rely on smallholder maize farms for subsistence agriculture, the main driver of local economic activity and food security. However, their planted area estimates are unknown in most developing countries. This study explores the use of Sentinel-1 and Sentinel-2 data to map smallholder maize farms. The random forest (RF), support vector (SVM) machine learning algorithms and model stacking (ST) were applied. Results show that the classification of combined Sentinel-1 and Sentinel-2 data improved the RF, SVM and ST algorithms by 24.2%, 8.7%, and 9.1%, respectively, compared to the classification of Sentinel-1 data individually. Similarities in the estimated areas (7001.35 ± 1.2 ha for RF, 7926.03 ± 0.7 ha for SVM and 7099.59 ± 0.8 ha for ST) show that machine learning can estimate smallholder maize areas with high accuracies. The study concludes that the single-date Sentinel-1 data were insufficient to map smallholder maize farms. However, single-date Sentinel-1 combined with Sentinel-2 data were sufficient in mapping smallholder farms. These results can be used to support the generation and validation of national crop statistics, thus contributing to food security.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 126-127
Author(s):  
Lucas S Lopes ◽  
Christine F Baes ◽  
Dan Tulpan ◽  
Luis Artur Loyola Chardulo ◽  
Otavio Machado Neto ◽  
...  

Abstract The aim of this project is to compare some of the state-of-the-art machine learning algorithms on the classification of steers finished in feedlots based on performance, carcass and meat quality traits. The precise classification of animals allows for fast, real-time decision making in animal food industry, such as culling or retention of herd animals. Beef production presents high variability in its numerous carcass and beef quality traits. Machine learning algorithms and software provide an opportunity to evaluate the interactions between traits to better classify animals. Four different treatment levels of wet distiller’s grain were applied to 97 Angus-Nellore animals and used as features for the classification problem. The C4.5 decision tree, Naïve Bayes (NB), Random Forest (RF) and Multilayer Perceptron (MLP) Artificial Neural Network algorithms were used to predict and classify the animals based on recorded traits measurements, which include initial and final weights, sheer force and meat color. The top performing classifier was the C4.5 decision tree algorithm with a classification accuracy of 96.90%, while the RF, the MLP and NB classifiers had accuracies of 55.67%, 39.17% and 29.89% respectively. We observed that the final decision tree model constructed with C4.5 selected only the dry matter intake (DMI) feature as a differentiator. When DMI was removed, no other feature or combination of features was sufficiently strong to provide good prediction accuracies for any of the classifiers. We plan to investigate in a follow-up study on a significantly larger sample size, the reasons behind DMI being a more relevant parameter than the other measurements.


Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 109
Author(s):  
Jimy Oblitas ◽  
Jorge Ruiz

Terahertz time-domain spectroscopy is a useful technique for determining some physical characteristics of materials, and is based on selective frequency absorption of a broad-spectrum electromagnetic pulse. In order to investigate the potential of this technology to classify cocoa percentages in chocolates, the terahertz spectra (0.5–10 THz) of five chocolate samples (50%, 60%, 70%, 80% and 90% of cocoa) were examined. The acquired data matrices were analyzed with the MATLAB 2019b application, from which the dielectric function was obtained along with the absorbance curves, and were classified by using 24 mathematical classification models, achieving differentiations of around 93% obtained by the Gaussian SVM algorithm model with a kernel scale of 0.35 and a one-against-one multiclass method. It was concluded that the combined processing and classification of images obtained from the terahertz time-domain spectroscopy and the use of machine learning algorithms can be used to successfully classify chocolates with different percentages of cocoa.


Sign in / Sign up

Export Citation Format

Share Document