Applying Blockchain Technologies in Healthcare

Author(s):  
Zehra Ozge Candereli ◽  
Serhat Burmaoglu ◽  
Levent B. Kidak ◽  
Dilek Ozdemir Gungor

Recently, one of the inventive developments penetrating many industries is blockchain technology. In the era of globalization and digitalization, blockchain has garnered interest in various application fields from health data management to clinical trials. In this study, we aimed to explore blockchain applications in healthcare with an explorative perspective with a scientometrics analysis. With this analysis, the trends and evolutionary relations between health and blockchain technology were examined via the queries in the Web of Science database. In the analysis, the author keyword co-occurrences were used for demonstrating concept relationships. To understand the new emerging study field, VosViewer was used for network visualizations and CiteSpace free java-based software was used for scientometrics analysis. As a result, it can be implied that the main focus areas of the studies on blockchain are solving payment systems, digital identity, and privacy and security issues in healthcare field.

Author(s):  
Sourav Banerjee ◽  
Debashis Das ◽  
Manju Biswas ◽  
Utpal Biswas

Blockchain-based technology is becoming increasingly popular and is now used to solve a wide range of tasks. And it's not all about cryptocurrencies. Even though it's based on secure technology, a blockchain needs protection as well. The risks of exploits, targeted attacks, or unauthorized access can be mitigated by the instant incident response and system recovery. Blockchain technology relies on a ledger to keep track of all financial transactions. Ordinarily, this kind of master ledger would be a glaring point of vulnerability. Another tenet of security is the chain itself. Configuration flaws, as well as insecure data storage and transfers, may cause leaks of sensitive information. This is even more dangerous when there are centralized components within the platform. In this chapter, the authors will demonstrate where the disadvantages of security and privacy in blockchain are currently and discuss how blockchain technology can improve these disadvantages and outlines the requirements for future solution.


2021 ◽  
pp. 193-215
Author(s):  
C.J. Raman ◽  
S. Usha Kiruthika ◽  
L. Javid Ali ◽  
S. Kanaga Suba Raja

2021 ◽  
Author(s):  
Yi Xie ◽  
Jiayao Zhang ◽  
Honglin Wang ◽  
Pengran Liu ◽  
Songxiang Liu ◽  
...  

BACKGROUND As a distributed technology, blockchain has attracted increasing attention from stakeholders in the medical industry. Although previous studies have analyzed blockchain applications from the perspectives of technology, business, or patient care, few studies have focused on actual use-case scenarios of blockchain in health care. In particular, the outbreak of COVID-19 has led to some new ideas for the application of blockchain in medical practice. OBJECTIVE This paper aims to provide a systematic review of the current and projected uses of blockchain technology in health care, as well as directions for future research. In addition to the framework structure of blockchain and application scenarios, its integration with other emerging technologies in health care is discussed. METHODS We searched databases such as PubMed, EMBASE, Scopus, IEEE, and Springer using a combination of terms related to blockchain and health care. Potentially relevant papers were then compared to determine their relevance and reviewed independently for inclusion. Through a literature review, we summarize the key medical scenarios using blockchain technology. RESULTS We found a total of 1647 relevant studies, 60 of which were unique studies that were included in this review. These studies report a variety of uses for blockchain and their emphasis differs. According to the different technical characteristics and application scenarios of blockchain, we summarize some medical scenarios closely related to blockchain from the perspective of technical classification. Moreover, potential challenges are mentioned, including the confidentiality of privacy, the efficiency of the system, security issues, and regulatory policy. CONCLUSIONS Blockchain technology can improve health care services in a decentralized, tamper-proof, transparent, and secure manner. With the development of this technology and its integration with other emerging technologies, blockchain has the potential to offer long-term benefits. Not only can it be a mechanism to secure electronic health records, but blockchain also provides a powerful tool that can empower users to control their own health data, enabling a foolproof health data history and establishing medical responsibility.


2021 ◽  
Vol 3 ◽  
Author(s):  
Victoria L. Lemieux ◽  
Darra Hofman ◽  
Hoda Hamouda ◽  
Danielle Batista ◽  
Ravneet Kaur ◽  
...  

This paper reports on end users' perspectives on the use of a blockchain solution for private and secure individual “omics” health data management and sharing. This solution is one output of a multidisciplinary project investigating the social, data, and technical issues surrounding application of blockchain technology in the context of personalized healthcare research. The project studies potential ethical, legal, social, and cognitive constraints of self-sovereign healthcare data management and sharing, and whether such constraints can be addressed through careful design of a blockchain solution.


2020 ◽  
Author(s):  
Tomonobu Hirano ◽  
Tomomitsu Motohashi ◽  
Kosuke Okumura ◽  
Kentaro Takajo ◽  
Taiyo Kuroki ◽  
...  

BACKGROUND The integrity of data in a clinical trial is essential, but the current data management process is too complex and highly labor-intensive. As a result, clinical trials are prone to consuming a lot of budget and time, and there is a risk for human-induced error and data falsification. Blockchain technology has the potential to address some of these challenges. OBJECTIVE The aim of the study was to validate a system that enables the security of medical data in a clinical trial using blockchain technology. METHODS We have developed a blockchain-based data management system for clinical trials and tested the system through a clinical trial for breast cancer. The project was conducted to demonstrate clinical data management using blockchain technology under the regulatory sandbox enabled by the Japanese Cabinet Office. RESULTS We verified and validated the data in the clinical trial using the validation protocol and tested its resilience to data tampering. The robustness of the system was also proven by survival with zero downtime for clinical data registration during a Amazon Web Services disruption event in the Tokyo region on August 23, 2019. CONCLUSIONS We show that our system can improve clinical trial data management, enhance trust in the clinical research process, and ease regulator burden. The system will contribute to the sustainability of health care services through the optimization of cost for clinical trials.


Author(s):  
Sourav Banerjee ◽  
Debashis Das ◽  
Manju Biswas ◽  
Utpal Biswas

Blockchain-based technology is becoming increasingly popular and is now used to solve a wide range of tasks. And it's not all about cryptocurrencies. Even though it's based on secure technology, a blockchain needs protection as well. The risks of exploits, targeted attacks, or unauthorized access can be mitigated by the instant incident response and system recovery. Blockchain technology relies on a ledger to keep track of all financial transactions. Ordinarily, this kind of master ledger would be a glaring point of vulnerability. Another tenet of security is the chain itself. Configuration flaws, as well as insecure data storage and transfers, may cause leaks of sensitive information. This is even more dangerous when there are centralized components within the platform. In this chapter, the authors will demonstrate where the disadvantages of security and privacy in blockchain are currently and discuss how blockchain technology can improve these disadvantages and outlines the requirements for future solution.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2042 ◽  
Author(s):  
Yiming Jiang ◽  
Chenxu Wang ◽  
Yawei Wang ◽  
Lang Gao

With the rapid development of the internet of things (IoT), traditional industries are setting off a massive wave of digitization. In the era of the Internet of Everything, millions of devices and links in IoT pose more significant challenges to data management. Most existing solutions employ centralized systems to control IoT devices, which brings about the privacy and security issues in IoT data management. Recently, blockchain has attracted much attention in the field of IoT due to its decentralization, traceability, and non-tamperability. However, it is non-trivial to apply the current blockchain techniques to IoT due to the lack of scalability and high resource costs. Different blockchain platforms have their particular advantages in the scenario of IoT data management. In this paper, we propose a cross-chain framework to integrate multiple blockchains for efficient and secure IoT data management. Our solution builds an interactive decentralized access model which employs a consortium blockchain as the control station. Other blockchain platforms customized for specific IoT scenarios run as the backbone of all IoT devices. It is equivalent to opening the off-chain channels on the consortium blockchain. Our model merges transactions in these channels for confirmation based on the notary mechanism. Finally, we implement a prototype of the proposed model based on hyperledge Fabric and IOTA Tangle. We evaluate the performance of our method through extensive experiments. The results demonstrate the effectiveness and efficiency of our framework.


2020 ◽  
Author(s):  
Ilhaam Omar ◽  
Raja Jayaraman ◽  
Khaled Salah ◽  
Ibrar Yaqoob ◽  
Samer Ellahham

<p>Blockchain technology has disclosed unprecedented opportunities in the healthcare sector by unlocking the true value of interoperability. Specifically, the striking features of blockchain technology, such as data provenance, transparency, decentralized transaction validation, and immutability can help to compensate for stringent data management issues (e.g., patient recruitment, persistent monitoring, data management, and data analytics and accurate reporting) in clinical trials (CTs). Although several research studies show that blockchain solutions help to improve patient retention, data integrity, privacy, and ensure CTs compliance with regulatory policies, a comprehensive survey on this topic is lacking. In this survey, we provide insights into the adoption of blockchain technology in CTs. We categorize and classify the literature by devising a meticulous taxonomy of the decentralized tasks of CT and practices based on indispensable parameters. Furthermore, we provide insights on works in progress towards deploying blockchain solutions in CTs. Finally, we identify and discuss several challenges that hinder the successful implementation of blockchain technologies in CTs.</p>


2020 ◽  
Author(s):  
Ilhaam Omar ◽  
Raja Jayaraman ◽  
Khaled Salah ◽  
Ibrar Yaqoob ◽  
Samer Ellahham

<p>Blockchain technology has disclosed unprecedented opportunities in the healthcare sector by unlocking the true value of interoperability. Specifically, the striking features of blockchain technology, such as data provenance, transparency, decentralized transaction validation, and immutability can help to compensate for stringent data management issues (e.g., patient recruitment, persistent monitoring, data management, and data analytics and accurate reporting) in clinical trials (CTs). Although several research studies show that blockchain solutions help to improve patient retention, data integrity, privacy, and ensure CTs compliance with regulatory policies, a comprehensive survey on this topic is lacking. In this survey, we provide insights into the adoption of blockchain technology in CTs. We categorize and classify the literature by devising a meticulous taxonomy of the decentralized tasks of CT and practices based on indispensable parameters. Furthermore, we provide insights on works in progress towards deploying blockchain solutions in CTs. Finally, we identify and discuss several challenges that hinder the successful implementation of blockchain technologies in CTs.</p>


Sign in / Sign up

Export Citation Format

Share Document