Machine Learning in Sentiment Analysis Over Twitter

Author(s):  
Kadda Zerrouki

Social networks are the main resources to gather information about people's opinions and sentiments towards different topics as they spend hours daily on social media and share their opinions. Twitter is a platform widely used by people to express their opinions and display sentiments on different occasions. Sentiment analysis's (SA) task is to label people's opinions as different categories such as positive and negative from a given piece of text. Another task is to decide whether a given text is subjective, expressing the writer's opinions, or objective. These tasks were performed at different levels of analysis ranging from the document level to the sentence and phrase level. Another task is aspect extraction, which originated from aspect-based sentiment analysis in phrase level. All these tasks are under the umbrella of SA. In recent years, a large number of methods, techniques, and enhancements have been proposed for the problem of SA in different tasks at different levels. Sentiment analysis is an approach to analyze data and retrieve sentiment that it embodies. Twitter sentiment analysis is an application of sentiment analysis on data from Twitter (tweets) in order to extract sentiments conveyed by the user. In the past decades, the research in this field has consistently grown. The reason behind this is the challenging format of the tweets, which makes the processing difficult. The tweet format is very small, which generates a whole new dimension of problems like use of slang, abbreviations, etc. The chapter elaborately discusses three supervised machine learning algorithms—naïve Bayes, k-nearest neighbor (KNN), and decision tree—and compares their overall accuracy, precisions, as well as recall values; f-measure; number of tweets correctly classified; number of tweets incorrectly classified; and execution time.

2021 ◽  
Vol 11 (2) ◽  
pp. 15-23
Author(s):  
Sabrina Jahan Maisha ◽  
Nuren Nafisa ◽  
Abdul Kadar Muhammad Masum

We can state undoubtedly that Bangla language is rich enough to work with and implement various Natural Language Processing (NLP) tasks. Though it needs proper attention, hardly NLP field has been explored with it. In this age of digitalization, large amount of Bangla news contents are generated in online platforms. Some of the contents are inappropriate for the children or aged people. With the motivation to filter out news contents easily, the aim of this work is to perform document level sentiment analysis (SA) on Bangla online news. In this respect, the dataset is created by collecting news from online Bangla newspaper archive.  Further, the documents are manually annotated into positive and negative classes. Composite process technique of “Pipeline” class including Count Vectorizer, transformer (TF-IDF) and machine learning (ML) classifiers are employed to extract features and to train the dataset. Six supervised ML classifiers (i.e. Multinomial Naive Bayes (MNB), K-Nearest Neighbor (K-NN), Random Forest (RF), (C4.5) Decision Tree (DT), Logistic Regression (LR) and Linear Support Vector Machine (LSVM)) are used to analyze the best classifier for the proposed model. There has been very few works on SA of Bangla news. So, this work is a small attempt to contribute in this field. This model showed remarkable efficiency through better results in both the validation process of percentage split method and 10-fold cross validation. Among all six classifiers, RF has outperformed others by 99% accuracy. Even though LSVM has shown lowest accuracy of 80%, it is also considered as good output. However, this work has also exhibited surpassing outcome for recent and critical Bangla news indicating proper feature extraction to build up the model.


Author(s):  
Dimple Chehal ◽  
Parul Gupta ◽  
Payal Gulati

Sentiment analysis of product reviews on e-commerce platforms aids in determining the preferences of customers. Aspect-based sentiment analysis (ABSA) assists in identifying the contributing aspects and their corresponding polarity, thereby allowing for a more detailed analysis of the customer’s inclination toward product aspects. This analysis helps in the transition from the traditional rating-based recommendation process to an improved aspect-based process. To automate ABSA, a labelled dataset is required to train a supervised machine learning model. As the availability of such dataset is limited due to the involvement of human efforts, an annotated dataset has been provided here for performing ABSA on customer reviews of mobile phones. The dataset comprising of product reviews of Apple-iPhone11 has been manually annotated with predefined aspect categories and aspect sentiments. The dataset’s accuracy has been validated using state-of-the-art machine learning techniques such as Naïve Bayes, Support Vector Machine, Logistic Regression, Random Forest, K-Nearest Neighbor and Multi Layer Perceptron, a sequential model built with Keras API. The MLP model built through Keras Sequential API for classifying review text into aspect categories produced the most accurate result with 67.45 percent accuracy. K- nearest neighbor performed the worst with only 49.92 percent accuracy. The Support Vector Machine had the highest accuracy for classifying review text into aspect sentiments with an accuracy of 79.46 percent. The model built with Keras API had the lowest 76.30 percent accuracy. The contribution is beneficial as a benchmark dataset for ABSA of mobile phone reviews.


Current global huge cyber protection attacks resulting from Infected Encryption ransomware structures over all international locations and businesses with millions of greenbacks lost in paying compulsion abundance. This type of malware encrypts consumer files, extracts consumer files, and charges higher ransoms to be paid for decryption of keys. An attacker could use different types of ransomware approach to steal a victim's files. Some of ransomware attacks like Scareware, Mobile ransomware, WannaCry, CryptoLocker, Zero-Day ransomware attack etc. A zero-day vulnerability is a software program security flaw this is regarded to the software seller however doesn’t have patch in vicinity to restore a flaw. Despite the fact that machine learning algorithms are already used to find encryption Ransomware. This is based on the analysis of a large number of PE file data Samples (benign software and ransomware utility) makes use of supervised machine learning algorithms for ascertain Zero-day attacks. This work was done on a Microsoft Windows operating system (the most attacked os through encryption ransomware) and estimated it. We have used four Supervised learning Algorithms, Random Forest Classifier , K-Nearest Neighbor, Support Vector Machine and Logistic Regression. Tests using machine learning algorithms evaluate almost null false positives with a 99.5% accuracy with a random forest algorithm.


Author(s):  
Kadda Zerrouki ◽  
Reda Mohamed Hamou ◽  
Abdellatif Rahmoun

Making use of social media for analyzing the perceptions of the masses over a product, event, or a person has gained momentum in recent times. Out of a wide array of social networks, the authors chose Twitter for their analysis as the opinions expressed there are concise and bear a distinctive polarity. Sentiment analysis is an approach to analyze data and retrieve sentiment that it embodies. The paper elaborately discusses three supervised machine learning algorithms—naïve bayes, k-nearest neighbor (KNN), and decision tree—and compares their overall accuracy, precision, as well as recall values, f-measure, number of tweets correctly classified, number of tweets incorrectly classified, and execution time.


2021 ◽  
Author(s):  
Anshika Arora ◽  
Pinaki Chakraborty ◽  
M.P.S. Bhatia

Excessive use of smartphones throughout the day having dependency on them for social interaction, entertainment and information retrieval may lead users to develop nomophobia. This makes them feel anxious during non-availability of smartphones. This study describes the usefulness of real time smartphone usage data for prediction of nomophobia severity using machine learning. Data is collected from 141 undergraduate students analyzing their perception about their smartphone using the Nomophobia Questionnaire (NMP-Q) and their real time smartphone usage patterns using a purpose-built android application. Supervised machine learning models including Random Forest, Decision Tree, Support Vector Machines, Naïve Bayes and K-Nearest Neighbor are trained using two features sets where the first feature set comprises only the NMP-Q features and the other comprises real time smartphone usage features along with the NMP-Q features. Performance of these models is evaluated using f-measure and area under ROC and It is observed that all the models perform better when provided with smartphone usage features along with the NMP-Q features. Naïve Bayes outperforms other models in prediction of nomophobia achieving a f-measure value of 0.891 and ROC area value of 0.933.


Artificial intelligence is the technology that lets a machine mimic the thinking ability of a human being. Machine learning is the subset of AI, that makes this machine exhibit human behavior by making it learn from the known data, without the need of explicitly programming it. The health care sector has adopted this technology, for the development of medical procedures, maintaining huge patient’s records, assist physicians in the prediction, detection, and treatment of diseases and many more. In this paper, a comparative study of six supervised machine learning algorithms namely Logistic Regression(LR),support vector machine(SVM),Decision Tree(DT).Random Forest(RF),k-nearest neighbor(k-NN),Naive Bayes (NB) are made for the classification and prediction of diseases. Result shows out of compared supervised learning algorithms here, logistic regression is performing best with an accuracy of 81.4 % and the least performing is k-NN with just an accuracy of 69.01% in the classification and prediction of diseases.


Author(s):  
Satyen M. Parikh ◽  
Mitali K. Shah

A utilization of the computational semantics is known as natural language processing or NLP. Any opinion through attitude, feelings, and thoughts can be identified as sentiment. The overview of people against specific events, brand, things, or association can be recognized through sentiment analysis. Positive, negative, and neutral are each of the premises that can be grouped into three separate categories. Twitter, the most commonly used microblogging tool, is used to gather information for research. Tweepy is used to access Twitter's source of information. Python language is used to execute the classification algorithm on the information collected. Two measures are applied in sentiment analysis, namely feature extraction and classification. Using n-gram modeling methodology, the feature is extracted. Through a supervised machine learning algorithm, the sentiment is graded as positive, negative, and neutral. Support vector machine (SVM) and k-nearest neighbor (KNN) classification models are used and demonstrated both comparisons.


2019 ◽  
Vol 6 ◽  
pp. 237428951987308 ◽  
Author(s):  
Hooman H. Rashidi ◽  
Nam K. Tran ◽  
Elham Vali Betts ◽  
Lydia P. Howell ◽  
Ralph Green

Increased interest in the opportunities provided by artificial intelligence and machine learning has spawned a new field of health-care research. The new tools under development are targeting many aspects of medical practice, including changes to the practice of pathology and laboratory medicine. Optimal design in these powerful tools requires cross-disciplinary literacy, including basic knowledge and understanding of critical concepts that have traditionally been unfamiliar to pathologists and laboratorians. This review provides definitions and basic knowledge of machine learning categories (supervised, unsupervised, and reinforcement learning), introduces the underlying concept of the bias-variance trade-off as an important foundation in supervised machine learning, and discusses approaches to the supervised machine learning study design along with an overview and description of common supervised machine learning algorithms (linear regression, logistic regression, Naive Bayes, k-nearest neighbor, support vector machine, random forest, convolutional neural networks).


Author(s):  
Yu Shao ◽  
Xinyue Wang ◽  
Wenjie Song ◽  
Sobia Ilyas ◽  
Haibo Guo ◽  
...  

With the increasing aging population in modern society, falls as well as fall-induced injuries in elderly people become one of the major public health problems. This study proposes a classification framework that uses floor vibrations to detect fall events as well as distinguish different fall postures. A scaled 3D-printed model with twelve fully adjustable joints that can simulate human body movement was built to generate human fall data. The mass proportion of a human body takes was carefully studied and was reflected in the model. Object drops, human falling tests were carried out and the vibration signature generated in the floor was recorded for analyses. Machine learning algorithms including K-means algorithm and K nearest neighbor algorithm were introduced in the classification process. Three classifiers (human walking versus human fall, human fall versus object drop, human falls from different postures) were developed in this study. Results showed that the three proposed classifiers can achieve the accuracy of 100, 85, and 91%. This paper developed a framework of using floor vibration to build the pattern recognition system in detecting human falls based on a machine learning approach.


Sign in / Sign up

Export Citation Format

Share Document