Virtual Supercomputer Using Volunteer Computing

Author(s):  
Rajashree Shettar ◽  
Vidya Niranjan ◽  
V. Uday Kumar Reddy

Invention of new computing techniques like cloud and grid computing has reduced the cost of computations by resource sharing. Yet, many applications have not moved completely into these new technologies mainly because of the unwillingness of the scientists to share the data over internet for security reasons. Applications such as Next Generation Sequencing (NGS) require high processing power to process and analyze genomic data of the order of petabytes. Cloud computing techniques to process this large datasets could be used which involves moving data to third party distributed system to reduce computing cost, but this might lead to security concerns. These issues are resolved by using a new distributed architecture for De novo assembly using volunteer computing paradigm. The cost of computation is reduced by around 90% by using volunteer computing and resource utilization is increased from 80% to 90%, it is secure as computation can be done locally within the organization and is scalable.

Author(s):  
Rajashree Shettar ◽  
Vidya Niranjan ◽  
V. Uday Kumar Reddy

Invention of new computing techniques like cloud and grid computing has reduced the cost of computations by resource sharing. Yet, many applications have not moved completely into these new technologies mainly because of the unwillingness of the scientists to share the data over internet for security reasons. Applications such as Next Generation Sequencing (NGS) require high processing power to process and analyze genomic data of the order of petabytes. Cloud computing techniques to process this large datasets could be used which involves moving data to third party distributed system to reduce computing cost, but this might lead to security concerns. These issues are resolved by using a new distributed architecture for De novo assembly using volunteer computing paradigm. The cost of computation is reduced by around 90% by using volunteer computing and resource utilization is increased from 80% to 90%, it is secure as computation can be done locally within the organization and is scalable.


1989 ◽  
Vol 2 (3) ◽  
pp. 152-161 ◽  
Author(s):  
David L. Laven ◽  
William R. Martin

Diversification is the greatest survival strategy available to hospital pharmacy today. Nuclear pharmacy is a growing field within institutional pharmacy practice and can help ensure the profession's participation in new technologies and clinical support roles. Nuclear pharmacy practice parallels hospital pharmacy practice in many areas including procurement, compounding, dispensing, quality assessment, and drug use review. Particularly important to the practice of pharmacy are the clinical contributions by nuclear pharmacists in areas such as product selection, drug interactions and interferences, and assisting the physician in the interpretation of nuclear medicine imaging data. Hospital-based nuclear pharmacy services are closely allied with nuclear medicine and radiology, which have felt the effects of changing trends in third party reimbursement. It has been shown repeatedly that nuclear pharmacists can make an impact on the quality of nuclear medicine services, while improving the cost effectiveness of these services. For the past several years, only a few hospital pharmacies have made attempts to provide services to nuclear medicine or radiology departments. Pharmacy has a professional responsibility and obligation to become involved with the use of legend drugs routinely used (or soon to be introduced) within these departments. Nuclear pharmacy is an area in the hospital where pharmacy can make a solid financial impact and broaden its scope of recognition and value.


2018 ◽  
Author(s):  
Berline Fopa Fomeju ◽  
Dominique Brunel ◽  
Aurélie Bérard ◽  
Jean-Baptiste Rivoal ◽  
Philippe Gallois ◽  
...  

AbstractNext-Generation Sequencing (NGS) technologies, by reducing the cost and increasing the throughput of sequencing, have opened doors of research efforts to generate genomic data to a range of previously poorly studied species. In this study, we proposed a method for the rapid development of a large scale molecular resources for orphan species. We studied as an example Lavandula angustifolia, a perennial sub-shrub plant native from the Mediterranean region and whose essential oil have numerous applications in cosmetics, pharmaceuticals, and alternative medicines.We first built a ‘Maillette’ reference Unigene, compound of coding sequences, thanks to de novo RNA-seq assembly. Then, we reconstructed the complete genes sequences (with exons and introns) using a transcriptome-guided DNA-seq assembly approach in order to maximize the possibilities of finding polymorphism between genetically close individuals. Finally, we used these resources for SNP mining within a collection of 16 lavender clones and tested the SNP within the scope of a phylogeny analysis. We obtained a cleaned reference of 8, 030 functionally annotated ‘genes’ (in silico annotation). We found up to 400K polymorphic sites, depending on the genotype analyzed, and observed a high SNP frequency (mean of 1 SNP per 90 bp) and a high level of heterozygosity (more than 60% of heterozygous SNP per genotype). We found similar genetic distances between pairs of clones, related to the out-crossing nature of the species, the restricted area of cultivation and the clonal propagation of the varieties.The method propose is transferable to other orphan species, requires little bioinformatics resources and can be realized within a year. This is the first reported large-scale SNP development on Lavandula angustifolia. All this data provides a rich pool of molecular resource to explore and exploit biodiversity in breeding programs.


2021 ◽  
Vol 20 (2) ◽  
pp. 102-110
Author(s):  
Andreea Antuca ◽  
Robin Noble

There has been a data revolution: the combination of sensors, processing power and mobile communications means that there is more of it, and it is having a greater impact on our lives than ever before. Across the world, there have recently been many new initiatives and legislative proposals for opening up access to some of that data. This is often driven by two different motivations: the desire to create new positive outcomes with existing resources, and the desire to correct negative impacts on competition in markets. To regulate data access properly, it is necessary to understand what makes data different and what its value is. If data access is going to be mandated, how can one value the data that a business holds, and set fair and reasonable charges for access to it? Economic tools that analyse the cost of creating the data, and the benefits derived from it, provide critical insight into this question.


2021 ◽  
Vol 9 (1) ◽  
pp. 444-455
Author(s):  
Muhammad Waqar Khan, Sumaira Yousuf Khan, Sahar Altaf, Muhammad Wajahat Ali

In the recent years, cloud computing has become a widely utilized revolution in the field of data modernization due to its favorable circumstances like high processing power, less expense of administrations, elite adaptability, unwavering quality and  accessibility. It is an integral tool that improves the cost of equipment, controllability and utility to share the information and so forth numerous organizations are turning their applications and administrations on the cloud. It offers secure and versatile administrations but in every case there exists some cloud security and protection issues when information has sent from a focal stockpiling worker to an alternate cloud, individual and private information augment the danger of information secrecy, respectability, accessibility, and verification before one pick a merchant in the cloud or pick the cloud and move services in the cloud. In this research, paper several articles are reviewed that deals with the security issues and the remedial actions and responses that have been taken by researchers and organizations in the field of cloud computing. This analysis provides insight to future research opportunities to students, researchers, publishers and experts and help them to study current research trend and security issues related to cloud computing.


2018 ◽  
Author(s):  
Byungjin Hwang ◽  
Sunghoon Heo ◽  
Namjin Cho ◽  
Duhee Bang

ABSTRACTA typical molecular cloning procedure requires Sanger sequencing for validation, which becomes cost-prohibitive and labour-intensive for large-scale clonal analysis of genotype-phenotype studies. Here we present a Tn5-mediated clonal analysis platform TnClone, which uses next-generation sequencing (NGS) to rapidly and cost-effectively analyze a large number of clones. We also developed a user-friendly graphical user interface and have provided general guidelines for conducting validation experiments. Using TnClone, we achieved more than 20-fold cost reduction compared with the cost incurred using conventional Sanger sequencing and detected low-frequency mutant clones (~10%) in mixed samples. We tested our programme and achieved 99.4% sensitivity. Our platform provides rapid turnaround with minimal hands-on time for secondary evaluation as NGS technology continues to evolve.


2019 ◽  
pp. 30-41 ◽  
Author(s):  
E.P. Sannikova ◽  
A.V. Malysheva ◽  
F.A. Klebanov ◽  
D.G. Kozlov

The capacity of yeast to produce the highly active variants of PLA2 has been confirmed. The high-active variants were based on the original enzyme from the strain А-2688 of Streptomyces violaceoruber. To reduce the enzyme toxicity and to increase its expression, various approaches were tested including point mutations, construction of artificial N- and/or C-end pro-regions, hybridization with other proteins and engineering or inactivation of glycosylation sites. As a main result, the modified PLA2 enzymes were obtained which have the same secretion level as their low-active predecessors, but specific activity of which was at least tenfold higher. As the main feature, the selected mutants were characterized by a lower affinity for Ca2+ that probably accounts for their low toxicity (and high expression capacity) at the stage of biosynthesis and their ability to activate under special conditions, e.g. during the egg yolk fermentation. The data obtained can provide a basis for the cost reduction of highly active PLA2 enzyme preparations in industries where the application of high calcium concentrations is allowed. recombinant phospholipase А2, Streptomyces violaceoruber, yeasts, secretion, producer strain The work was initiated by the Innovation Center Biriuch - New Technologies, Ltd., and was supported within the framework of the State Assignment no. 595-00004-18 PR.


Author(s):  
Seyoung Mun ◽  
Songmi Kim ◽  
Wooseok Lee ◽  
Keunsoo Kang ◽  
Thomas J. Meyer ◽  
...  

AbstractAdvances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 882
Author(s):  
M. Munzer Alseed ◽  
Hamzah Syed ◽  
Mehmet Cengiz Onbasli ◽  
Ali K. Yetisen ◽  
Savas Tasoglu

Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.


Sign in / Sign up

Export Citation Format

Share Document