Internet of Things for Travel Services

Author(s):  
Serkan Polat ◽  
M. Fevzi Esen

A variety of data sources are available from smart devices which are connected to each other via different communication protocols. These devices are designed to be used in human-centric environments through a distributed physical-virtual interaction. Internet of things (IoT) is a concept of gathering the variety of devices through wired or wireless connections anytime and anyplace. This helps to create new services by integrating the physical world into virtual systems within various domains of tourism. In this chapter, the authors discuss the importance of IoT data for travel services. In the study, the major challenges and opportunities of IoT that allow tour operators and travel agencies to improve the customer experience and provide personalized services are examined. It is concluded that although there are studies on the use of IoT applications within tourism industries, there have been very limited studies conducted on integrated applications of IoT, especially for tour operators and travel agencies.

Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) is aimed at modifying the life of people by adopting the possible computing techniques to the physical world, and thus transforming the computing environment from centralized form to decentralized form. Most of the smart devices receive the data from other smart devices over the network and perform actions based on their implemented programs. Thus, testing becomes an intensive process in the IoT that will require some normalization too. The composite architecture of IoT systems and their distinctive characteristics require different variants of testing to be done on the components of IoT systems. This chapter will discuss the necessity for IoT testing in terms of various criteria of identifying and fixing the problems in the IoT systems. In addition, this chapter examines the core components to be focused on IoT testing and testing scope based on IoT device classification. It also elaborates the various types of testing applied on healthcare IoT applications, and finally, this chapter summarizes the various challenges faced during IoT testing.


2022 ◽  
pp. 571-601
Author(s):  
Karthick G. S. ◽  
Pankajavalli P. B.

The internet of things (IoT) is aimed at modifying the life of people by adopting the possible computing techniques to the physical world, and thus transforming the computing environment from centralized form to decentralized form. Most of the smart devices receive the data from other smart devices over the network and perform actions based on their implemented programs. Thus, testing becomes an intensive process in the IoT that will require some normalization too. The composite architecture of IoT systems and their distinctive characteristics require different variants of testing to be done on the components of IoT systems. This chapter will discuss the necessity for IoT testing in terms of various criteria of identifying and fixing the problems in the IoT systems. In addition, this chapter examines the core components to be focused on IoT testing and testing scope based on IoT device classification. It also elaborates the various types of testing applied on healthcare IoT applications, and finally, this chapter summarizes the various challenges faced during IoT testing.


2019 ◽  
Vol 1 (2) ◽  
pp. 16 ◽  
Author(s):  
Deepak Choudhary

The Internet of Things (IoT) enables the integration of data from virtual and physical worlds. It involves smart objects that can understand and react to their environment in a variety of industrial, commercial and household settings. As the IoT expands the number of connected devices, there is the potential to allow cyber-attackers into the physical world in which we live, as they seize on security holes in these new systems. New security issues arise through the heterogeneity  of  IoT  applications and devices and their large-scale deployment.


Author(s):  
Scott J. Shackelford

The Internet of Things (IoT) is the notion that nearly everything we use, from gym shorts to streetlights, will soon be connected to the Internet; the Internet of Everything (IoE) encompasses not just objects, but the social connections, data, and processes that the IoT makes possible. Industry and financial analysts have predicted that the number of Internet-enabled devices will increase from 11 billion to upwards of 75 billion by 2020. Regardless of the number, the end result looks to be a mind-boggling explosion in Internet connected stuff. Yet, there has been relatively little attention paid to how we should go about regulating smart devices, and still less about how cybersecurity should be enhanced. Similarly, now that everything from refrigerators to stock exchanges can be connected to a ubiquitous Internet, how can we better safeguard privacy across networks and borders? Will security scale along with this increasingly crowded field? Or, will a combination of perverse incentives, increasing complexity, and new problems derail progress and exacerbate cyber insecurity? For all the press that such questions have received, the Internet of Everything remains a topic little understood or appreciated by the public. This volume demystifies our increasingly “smart” world, and unpacks many of the outstanding security, privacy, ethical, and policy challenges and opportunities represented by the IoE. Scott J. Shackelford provides real-world examples and straightforward discussion about how the IoE is impacting our lives, companies, and nations, and explain how it is increasingly shaping the international community in the twenty-first century. Are there any downsides of your phone being able to unlock your front door, start your car, and control your thermostat? Is your smart speaker always listening? How are other countries dealing with these issues? This book answers these questions, and more, along with offering practical guidance for how you can join the effort to help build an Internet of Everything that is as secure, private, efficient, and fun as possible.


Author(s):  
Ramgopal Kashyap

Fast advancements in equipment, programming, and correspondence advances have permitted the rise of internet-associated tangible gadgets that give perception and information estimation from the physical world. It is assessed that the aggregate number of internet-associated gadgets being utilized will be in the vicinity of 25 and 50 billion. As the numbers develop and advances turn out to be more develop, the volume of information distributed will increment. Web-associated gadgets innovation, alluded to as internet of things (IoT), keeps on broadening the present internet by giving network and cooperation between the physical and digital universes. Notwithstanding expanded volume, the IoT produces big data described by speed as far as time and area reliance, with an assortment of numerous modalities and changing information quality. Keen handling and investigation of this big data is the way to creating shrewd IoT applications. This chapter evaluates the distinctive machine learning techniques that deal with the difficulties in IoT information.


Author(s):  
Ramgopal Kashyap

Fast advancements in equipment, programming, and correspondence advances have permitted the rise of internet-associated tangible gadgets that give perception and information estimation from the physical world. It is assessed that the aggregate number of internet-associated gadgets being utilized will be in the vicinity of 25 and 50 billion. As the numbers develop and advances turn out to be more develop, the volume of information distributed will increment. Web-associated gadgets innovation, alluded to as internet of things (IoT), keeps on broadening the present internet by giving network and cooperation between the physical and digital universes. Notwithstanding expanded volume, the IoT produces big data described by speed as far as time and area reliance, with an assortment of numerous modalities and changing information quality. Keen handling and investigation of this big data is the way to creating shrewd IoT applications. This chapter evaluates the distinctive machine learning techniques that deal with the difficulties in IoT information.


2021 ◽  
pp. 99-103
Author(s):  
E. A. Frolova

The object of the study is the modern tourism and hospitality industry, which has faced significant losses and transformations over the past few years. Changes in the service system, transition to new standards, introduction of digital and online technologies in operations, etc. are affecting both industry players and consumer preferences. While some consumers only use the services of professional travel organisers, others travel on their own, preferring independent tourism. The article examines major trends in the tourism industry, reviews the market and gives recommendations on what challenges and opportunities to create a competitive advantage over online resources, aggregators in the fight for the consumer should pay attention to travel agencies as one of the key players in the market of travel services. 


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Feroz Khan A.B ◽  
◽  
Anandharaj G ◽  

The smart devices connected on the internet turn to be the internet of things, which connect other objects or devices through unique identifiers with the capability of transferring and receiving the information over the internet. There are numerous applications in different areas such as healthcare, home automation, transportation, military, agriculture, and still so many sectors that incorporate cutting-edge technologies of communication, networking, cloud computing, sensing, and actuation. With this huge increase in the number of connected devices, a strong security mechanism is required to protect the IoT devices. Hence, it is required to focus on the challenges and issues of IoT enabled applications to safeguard the entire network from the outside invasion. This paper discusses some of the challenges in building IoT applications, a detailed study of the existing security protocols, and its issues, and the potential of the IoT.


2021 ◽  
Vol 9 (1) ◽  
pp. 912-931
Author(s):  
Pavan Madduru

To meet the growing demand for mobile data traffic and the stringent requirements for Internet of Things (IoT) applications in emerging cities such as smart cities, healthcare, augmented / virtual reality (AR / VR), fifth-generation assistive technologies generation (5G) Suggest and use on the web. As a major emerging 5G technology and a major driver of the Internet of Things, Multiple Access Edge Computing (MEC), which integrates telecommunications and IT services, provides cloud computing capabilities at the edge of an access network. wireless (RAN). By providing maximum compute and storage resources, MEC can reduce end-user latency. Therefore, in this article we will take a closer look at 5G MEC and the Internet of Things. Analyze the main functions of MEC in 5G and IoT environments. It offers several core technologies that enable the use of MEC in 5G and IoT, such as cloud computing, SDN / NFV, information-oriented networks, virtual machines (VMs) and containers, smart devices, shared networks and computing offload. This article also provides an overview of MEC's ​​role in 5G and IoT, a detailed introduction to MEC-enabled 5G and IoT applications, and future perspectives for MEC integration with 5G and IoT. Additionally, this article will take a closer look at the MEC research challenges and unresolved issues around 5G and the Internet of Things. Finally, we propose a use case that MEC uses to obtain advanced intelligence in IoT scenarios.


Author(s):  
P. Suresh ◽  
S. Koteeswaran ◽  
N. Malarvizhi ◽  
R. H. Aswathy

The physical world entities are communicated via advanced communication technologies without human intervention. Such an evolving advanced version of automation technology is internet of things (IOT), where each smart device is provided with unique identification. The integration part of such technology comprises key elements, protocols, applications, and research challenges. This chapter discusses such terms and addresses the research challenges. The concept of fog computing is analyzed by cognitive approach. Fog computing localizes the processing information and optimizes the communication and storage among enormous smart devices. In addition, it favourably mitigates the need of bandwidth size and delay in communication.


Sign in / Sign up

Export Citation Format

Share Document