Symbioses as an Alternative to Master/Slave for Artificial Intelligence

Author(s):  
John Thomas Riley

Human society is facing enormous problems this century as result of our climate crisis. These problems include sea level rise and the loss of farming capability. Society will need all the new tools it can develop to address these problems. Artificial intelligence with deep learning is one of these powerful tools, and it is new. Exactly how it will be used has not been determined. The current approach to the human/AI interface is referred to as master/slave. The human simply tells the AI what to do. This arrangement has many problems, and replacing it has been suggested. One possible new arrangement is a human/AI symbiosis. This would require a long-term relationship between a specific human and a specific AI. A novel, Born to Storms, exploring this arrangement is discussed at length.

Author(s):  
John Thomas Riley

The story of General Patton at the Battle of the Bulge is an excellent example of a story with a message that can be applied to our climate crisis. Our climate crisis is the defining problem for human society in the 21st century. Although the current situation is chaotic, as in this story, several positive paths are now clear enough to allow useful plans for a worldwide effort. One alternative to fear is to build a vision of a viable future through stories. Stories have a long history of being a common tool for building unified societal efforts. The stories that society now needs require both a science-based background and believable characters in effective action on our climate crisis. The elements used to build stories, first the background and then the plot, are called beats. The background beats developed here include sea level rise, no-till farming, population peaking, and technology innovation for the period 2020 to 2100. These beats should enable fiction writers to place stories and characters in a world of action on our climate crisis.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1324
Author(s):  
David Revell ◽  
Phil King ◽  
Jeff Giliam ◽  
Juliano Calil ◽  
Sarah Jenkins ◽  
...  

Sea level rise increases community risks from erosion, wave flooding, and tides. Current management typically protects existing development and infrastructure with coastal armoring. These practices ignore long-term impacts to public trust coastal recreation and natural ecosystems. This adaptation framework models physical responses to the public beach and private upland for each adaptation strategy over time, linking physical changes in widths to damages, economic costs, and benefits from beach recreation and nature using low-lying Imperial Beach, California, as a case study. Available coastal hazard models identified community vulnerabilities, and local risk communication engagement prioritized five adaptation approaches—armoring, nourishment, living shorelines, groins, and managed retreat. This framework innovates using replacement cost as a proxy for ecosystem services normally not valued and examines a managed retreat policy approach using a public buyout and rent-back option. Specific methods and economic values used in the analysis need more research and innovation, but the framework provides a scalable methodology to guide coastal adaptation planning everywhere. Case study results suggest that coastal armoring provides the least public benefits over time. Living shoreline approaches show greater public benefits, while managed retreat, implemented sooner, provides the best long-term adaptation strategy to protect community identity and public trust resources.


2021 ◽  
Author(s):  
Fabien Maussion ◽  
Quentin Lejeune ◽  
Ben Marzeion ◽  
Matthias Mengel ◽  
David Rounce ◽  
...  

<p>Mountain glaciers have a delayed response to climate change and are expected to continue to melt long after greenhouse gas emissions have stopped, with consequences both for sea-level rise and water resources. In this contribution, we use the Open Global Glacier Model (OGGM) to compute global glacier volume and runoff changes until the year 2300 under a suite of stylized greenhouse gas emission characterized by (i) the year at which anthropogenic emissions culminate, (ii) their reduction rates after peak emissions and (iii) whether they lead to a long-term global temperature stabilization or decline. We show that even under scenarios that achieve the Paris Agreement goal of holding global-mean temperature below 2 °C, glacier contribution to sea-level rise will continue well beyond 2100. Because of this delayed response, the year of peak emissions (i.e. the timing of mitigation action) has a stronger influence on mit-term global glacier change than other emission scenario characteristics, while long-term change is dependent on all factors. We also discuss the impact of early climate mitigation on regional glacier change and the consequences for glacier runoff, both short-term (where some basins are expected to experience an increase of glacier runoff) and long-term (where all regions are expecting a net-zero or even negative glacier contribution to total runoff), underlining the importance of mountain glaciers for regional water availability at all timescales.</p>


2021 ◽  
Author(s):  
Judith Lawrence ◽  
Jonathan Boston ◽  
R Bell ◽  
S Olufson ◽  
R Kool ◽  
...  

Purpose of Review: Managed retreat will be inevitable where other adaptation options, such as protective structures or building restrictions, provide only temporary respite or are otherwise uneconomic, technically impractical or both. Here, we focus on the implementation of pre-emptive managed retreat, providing examples of how it can be sequenced, socialised and given the governance enablers necessary for implementation. Recent Findings: Ongoing sea-level rise during the twenty-first century and beyond poses huge adaptation challenges, especially for low-lying coastal and floodplain settlements. Settlements are already functionally disrupted from repetitive non-extreme flooding and research shows that sea-level rise will impact far more people, far sooner than previously thought, as more powerful storms, heavy rainfall and rising groundwater coincide with higher tides. To date, most examples of managed retreat have been post-disaster responses following damage and disruption. Pre-emptive managed retreat, by contrast, has yet to become a well-accepted and widely practised adaptation response. Nevertheless, there are increasing examples of research and practice on how pre-emptive managed retreat can be designed, sequenced and implemented alongside other forms of adaptation within anticipatory forms of governance. Summary: The current state of knowledge about managed retreat is reviewed and critical insights and lessons for governance and policy-making are given. Several novel examples from New Zealand are presented to address some of the implementation gaps. Goals and principles are enunciated to inform long-term adaptation strategies.


2016 ◽  
Vol 7 (1) ◽  
pp. 203-210 ◽  
Author(s):  
K. Frieler ◽  
M. Mengel ◽  
A. Levermann

Abstract. Even if greenhouse gas emissions were stopped today, sea level would continue to rise for centuries, with the long-term sea-level commitment of a 2 °C warmer world significantly exceeding 2 m. In view of the potential implications for coastal populations and ecosystems worldwide, we investigate, from an ice-dynamic perspective, the possibility of delaying sea-level rise by pumping ocean water onto the surface of the Antarctic ice sheet. We find that due to wave propagation ice is discharged much faster back into the ocean than would be expected from a pure advection with surface velocities. The delay time depends strongly on the distance from the coastline at which the additional mass is placed and less strongly on the rate of sea-level rise that is mitigated. A millennium-scale storage of at least 80 % of the additional ice requires placing it at a distance of at least 700 km from the coastline. The pumping energy required to elevate the potential energy of ocean water to mitigate the currently observed 3 mm yr−1 will exceed 7 % of the current global primary energy supply. At the same time, the approach offers a comprehensive protection for entire coastlines particularly including regions that cannot be protected by dikes.


2012 ◽  
Vol 2 (12) ◽  
pp. 867-870 ◽  
Author(s):  
Michiel Schaeffer ◽  
William Hare ◽  
Stefan Rahmstorf ◽  
Martin Vermeer
Keyword(s):  

2019 ◽  
Vol 12 (9) ◽  
pp. 4013-4030 ◽  
Author(s):  
Jaap H. Nienhuis ◽  
Jorge Lorenzo-Trueba

Abstract. Barrier islands are low-lying coastal landforms vulnerable to inundation and erosion by sea level rise. Despite their socioeconomic and ecological importance, their future morphodynamic response to sea level rise or other hazards is poorly understood. To tackle this knowledge gap, we outline and describe the BarrieR Inlet Environment (BRIE) model that can simulate long-term barrier morphodynamics. In addition to existing overwash and shoreface formulations, BRIE accounts for alongshore sediment transport, inlet dynamics, and flood–tidal delta deposition along barrier islands. Inlets within BRIE can open, close, migrate, merge with other inlets, and build flood–tidal delta deposits. Long-term simulations reveal complex emergent behavior of tidal inlets resulting from interactions with sea level rise and overwash. BRIE also includes a stratigraphic module, which demonstrates that barrier dynamics under constant sea level rise rates can result in stratigraphic profiles composed of inlet fill, flood–tidal delta, and overwash deposits. In general, the BRIE model represents a process-based exploratory view of barrier island morphodynamics that can be used to investigate long-term risks of flooding and erosion in barrier environments. For example, BRIE can simulate barrier island drowning in cases in which the imposed sea level rise rate is faster than the morphodynamic response of the barrier island.


1999 ◽  
Vol 52 (3) ◽  
pp. 350-359 ◽  
Author(s):  
W.Roland Gehrels

A relative sea-level history is reconstructed for Machiasport, Maine, spanning the past 6000 calendar year and combining two different methods. The first method establishes the long-term (103 yr) trend of sea-level rise by dating the base of the Holocene saltmarsh peat overlying a Pleistocene substrate. The second method uses detailed analyses of the foraminiferal stratigraphy of two saltmarsh peat cores to quantify fluctuations superimposed on the long-term trend. The indicative meaning of the peat (the height at which the peat was deposited relative to mean tide level) is calculated by a transfer function based on vertical distributions of modern foraminiferal assemblages. The chronology is determined from AMS 14C dates on saltmarsh plant fragments embedded in the peat. The combination of the two different approaches produces a high-resolution, replicable sea-level record, which takes into account the autocompaction of the peat sequence. Long-term mean rates of sea-level rise, corrected for changes in tidal range, are 0.75 mm/yr between 6000 and 1500 cal yr B.P. and 0.43 mm/yr during the past 1500 year. The foraminiferal stratigraphy reveals several low-amplitude fluctuations during a relatively stable period between 1100 and 400 cal yr B.P., and a sea-level rise of 0.5 m during the past 300 year.


2020 ◽  
Author(s):  
Sara Rubinetti ◽  
Carla Taricco ◽  
Davide Zanchettin ◽  
Enrico Arnone ◽  
Angelo Rubino

<p>The city of Venice (Northern Italy), together with its lagoon, is a historic, cultural and artistic heritage of inestimable value. One of its peculiarities consists in the recurrent storm surge phenomena, referred to as <em>acqua alta</em>. Sea level rise and local subsidence made their frequency to increase dramatically with respect to the past, causing severe damages to the lagoon and in particular to the city centre, as during the exceptional high tide verified on November 12, 2019.<br>Here we show the analysis of the historical time series of tidal maxima and minima recorded in the Venetian lagoon, covering the period 1872-2018. It is the longest and most complete historical series of the Venetian area and one of the longest records of the entire Mediterranean region. During this period, the relative sea level height has increased of about 30 cm with respect to the reference level, while the average number of <em>acqua alta</em> events – evaluated over a 40-year time interval - has passed from about 4 to 70 per year. These events usually occur during the fall season (from October to December), even if a not negligible number has been also recorded during winter. Therefore, we analyse the October-March average annual time series with advanced spectral analysis methods, like Monte Carlo Singular Spectrum Analysis (MC-SSA), to extract and reconstruct the significant variability modes characterizing the record. They are the increasing long-term trend and components with multidecadal, decadal and interannual periods. The trend results from the superposition on the global eustacy of the local subsidence affecting the Venetian lagoon, which is due to both natural causes and human activities. We also discuss the possible linkage of the other significant spectral components to large scale climatic patterns. In particular, the decadal-scale oscillation is one of the most important variability modes affecting Northern Italian hydrology.<br>Finally, we apply simple statistical methods (autoregressive models and feed-forward neural networks) to forecast the long-term evolution of sea level over the next ten years. In this contribution, we illustrate results from this state of the art two-fold statistical prediction system that provides robust predictions of sea level in the Venetian lagoon for the next decade and discuss them in the light of current longer-term projections of future sea level rise. Finally, we will test the predictive skill of the applied methods using tidal measurements recorded during 2019, to verify if our predictions are able to describe tidal variability characterizing the current year.       </p>


Sign in / Sign up

Export Citation Format

Share Document