Edge Computing for Secured IoT Analytics on the Cloud

2022 ◽  
pp. 162-175
Author(s):  
S. Meenakshi Sundaram ◽  
Tejaswini R. Murgod

This chapter provides an insight into building healthcare applications that are deployed in the cloud storage using edge computing and IoT data analytics approaches. Data is collected from environments both within or external to the hospital. The devices that are connected enable the healthcare providers to monitor patients at large distances, manage chronic disease, and manage medication dosages. The data from these devices can be added to clinical research to gain an insight into the participant's experiences. Artificial intelligence techniques like machine learning or deep learning can be employed at the edge of the networks for IoT analytics of multiple data streams in online mode. The industrial edge computing is growing rapidly from 7% in 2019 to being expected to reach approximately 16% by 2025. The total market for intelligent industrial edge computing that includes hardware, software, services has reached $11.6B in 2019 and is expected to increase to $30.8B by 2025.

Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Kevin Page ◽  
Max Van Kleek ◽  
Omar Santos ◽  
...  

AbstractMultiple governmental agencies and private organisations have made commitments for the colonisation of Mars. Such colonisation requires complex systems and infrastructure that could be very costly to repair or replace in cases of cyber-attacks. This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


2019 ◽  
Vol 32 (5) ◽  
pp. 272-275 ◽  
Author(s):  
Eric Racine ◽  
Wren Boehlen ◽  
Matthew Sample

Forms of Artificial Intelligence (AI), like deep learning algorithms and neural networks, are being intensely explored for novel healthcare applications in areas such as imaging and diagnoses, risk analysis, lifestyle management and monitoring, health information management, and virtual health assistance. Expected benefits in these areas are wide-ranging and include increased speed in imaging, greater insight into predictive screening, and decreased healthcare costs and inefficiency. However, AI-based clinical tools also create a host of situations wherein commonly-held values and ethical principles may be challenged. In this short column, we highlight three potentially problematic aspects of AI use in healthcare: (1) dynamic information and consent, (2) transparency and ownership, and (3) privacy and discrimination. We discuss their impact on patient/client, clinician, and health institution values and suggest ways to tackle this impact. We propose that AI-related ethical challenges may represent an opportunity for growth in organizations.


Author(s):  
Petar Radanliev

This paper surveys deep learning algorithms, IoT cyber security and risk models, and established mathematical formulas to identify the best approach for developing a dynamic and self-adapting system for predictive cyber risk analytics supported with Artificial Intelligence and Machine Learning and real-time intelligence in edge computing. The paper presents a new mathematical approach for integrating concepts for cognition engine design, edge computing and Artificial Intelligence and Machine Learning to automate anomaly detection. This engine instigates a step change by applying Artificial Intelligence and Machine Learning embedded at the edge of IoT networks, to deliver safe and functional real-time intelligence for predictive cyber risk analytics. This will enhance capacities for risk analytics and assists in the creation of a comprehensive and systematic understanding of the opportunities and threats that arise when edge computing nodes are deployed, and when Artificial Intelligence and Machine Learning technologies are migrated to the periphery of the internet and into local IoT networks.


2020 ◽  
Vol 69 ◽  
pp. 807-845 ◽  
Author(s):  
Joseph Bullock ◽  
Alexandra Luccioni ◽  
Katherine Hoffman Pham ◽  
Cynthia Sin Nga Lam ◽  
Miguel Luengo-Oroz

COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, which has reported over 18 million confirmed cases as of August 5, 2020. In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID19 crisis. We have identified applications that address challenges posed by COVID-19 at different scales, including: molecular, by identifying new or existing drugs for treatment; clinical, by supporting diagnosis and evaluating prognosis based on medical imaging and non-invasive measures; and societal, by tracking both the epidemic and the accompanying infodemic using multiple data sources. We also review datasets, tools, and resources needed to facilitate Artificial Intelligence research, and discuss strategic considerations related to the operational implementation of multidisciplinary partnerships and open science. We highlight the need for international cooperation to maximize the potential of AI in this and future pandemics.


2015 ◽  
Vol 2 (3) ◽  
pp. 121-128
Author(s):  
Praveen Kumar Donepudi

There is a wide scope of interdisciplinary crossing points between Artificial Intelligence (AI) and Cybersecurity. On one hand, AI advancements, for example, deep learning, can be introduced into cybersecurity to develop smart models for executing malware classification and intrusion detection and threatening intelligent detecting. Then again, AI models will confront different cyber threats, which will affect their sample, learning, and decision making. Along these lines, AI models need specific cybersecurity defense and assurance advances to battle ill-disposed machine learning, preserve protection in AI, secure united learning, and so forth. Because of the above two angles, we audit the crossing point of AI and Cybersecurity. To begin with, we sum up existing research methodologies regarding fighting cyber threats utilizing artificial intelligence, including receiving customary AI techniques and existing deep learning solutions. At that point, we analyze the counterattacks from which AI itself may endure, divide their qualities, and characterize the relating protection techniques. And finally, from the aspects of developing encrypted neural networks and understanding safe deep learning, we expand the current analysis on the most proficient method to develop a secure AI framework. This paper centers mainly around a central question: "By what means can artificial intelligence applications be utilized to upgrade cybersecurity?" From this question rises the accompanying set of sub-questions: What is the idea of artificial intelligence and what are its fields? What are the main areas of artificial intelligence that can uphold cybersecurity? What is the idea of data mining and how might it be utilized to upgrade cybersecurity? Hence, this paper is planned to reveal insight into the idea of artificial intelligence and its fields, and how it can profit by applications of AI brainpower to upgrade and improve cybersecurity. Using an analytical distinct approach of past writing on the matter, the significance of the need to utilize AI strategies to improve cybersecurity was featured and the main fields of application of artificial intelligence that upgrade cybersecurity, for example, machine learning, data mining, deep learning, and expert systems.  


Author(s):  
Timo Minssen ◽  
Sara Gerke ◽  
Mateo Aboy ◽  
Nicholson Price ◽  
Glenn Cohen

Abstract Companies and healthcare providers are developing and implementing new applications of medical artificial intelligence, including the artificial intelligence sub-type of medical machine learning (MML). MML is based on the application of machine learning (ML) algorithms to automatically identify patterns and act on medical data to guide clinical decisions. MML poses challenges and raises important questions, including (1) How will regulators evaluate MML-based medical devices to ensure their safety and effectiveness? and (2) What additional MML considerations should be taken into account in the international context? To address these questions, we analyze the current regulatory approaches to MML in the USA and Europe. We then examine international perspectives and broader implications, discussing considerations such as data privacy, exportation, explanation, training set bias, contextual bias, and trade secrecy.


2020 ◽  
pp. 1-11
Author(s):  
Bharath Raju ◽  
Fareed Jumah ◽  
Omar Ashraf ◽  
Vinayak Narayan ◽  
Gaurav Gupta ◽  
...  

Big data has transformed into a trend phrase in healthcare and neurosurgery, becoming a pervasive and inescapable phrase in everyday life. The upsurge in big data applications is a direct consequence of the drastic boom in information technology as well as the growing number of internet-connected devices called the Internet of Things in healthcare. Compared with business, marketing, and other sectors, healthcare applications are lagging due to a lack of technical knowledge among healthcare workers, technological limitations in acquiring and analyzing the data, and improper governance of healthcare big data. Despite these limitations, the medical literature is flooded with big data–related articles, and most of these are filled with abstruse terminologies such as machine learning, artificial intelligence, artificial neural network, and algorithm. Many of the recent articles are restricted to neurosurgical registries, creating a false impression that big data is synonymous with registries. Others advocate that the utilization of big data will be the panacea to all healthcare problems and research in the future. Without a proper understanding of these principles, it becomes easy to get lost without the ability to differentiate hype from reality. To that end, the authors give a brief narrative of big data analysis in neurosurgery and review its applications, limitations, and the challenges it presents for neurosurgeons and healthcare professionals naive to this field. Awareness of these basic concepts will allow neurosurgeons to understand the literature regarding big data, enabling them to make better decisions and deliver personalized care.


2020 ◽  
Vol 4 (02) ◽  
pp. 116-120
Author(s):  
Srinath Damodaran ◽  
Arjun Alva ◽  
Srinath Kumar ◽  
Muralidhar Kanchi

AbstractThe creation of intelligent software or system, machine learning, and deep learning technologies are the integral components of artificial intelligence. Point-of-care ultrasound involves the bedside use of ultrasound to answer specific diagnostic questions and to assess real-time physiologic responses to treatment. This article provides insight into the pearls and pitfalls of artificial intelligence in point-of-care ultrasound for the coronavirus disease 2019 pandemic.


Author(s):  
Matthew N. O. Sadiku ◽  
Chandra M. M Kotteti ◽  
Sarhan M. Musa

Machine learning is an emerging field of artificial intelligence which can be applied to the agriculture sector. It refers to the automated detection of meaningful patterns in a given data.  Modern agriculture seeks ways to conserve water, use nutrients and energy more efficiently, and adapt to climate change.  Machine learning in agriculture allows for more accurate disease diagnosis and crop disease prediction. This paper briefly introduces what machine learning can do in the agriculture sector.


Sign in / Sign up

Export Citation Format

Share Document