Storage and Bandwidth Optimized Reliable Distributed Data Allocation Algorithm

2019 ◽  
Vol 10 (1) ◽  
pp. 78-95 ◽  
Author(s):  
Hindol Bhattacharya ◽  
Samiran Chattopadhyay ◽  
Matangini Chattopadhyay ◽  
Avishek Banerjee

Distributed storage allocation problems are an important optimization problem in reliable distributed storage, which aims to minimize storage cost while maximizing error recovery probability by optimal storage of data in distributed storage nodes. A key characteristic of distributed storage is that data is stored in remote servers across a network. Thus, network resources especially communication links are an expensive and non-trivial resource which should be optimized as well. In this article, the authors present a simulation-based study of the network characteristics of a distributed storage network in the light of several allocation patterns. By varying the allocation patterns, the authors have demonstrated the interdependence between network bandwidth, defined in terms of link capacity and allocation pattern using network throughput as a metric. Motivated by observing the importance of network resource as an important cost metric, the authors have formalized an optimization problem that jointly minimizes both the storage cost and the cost of network resources. A hybrid meta heuristic algorithm is employed that solves this optimization problem by allocating data in a distributed storage system. Experimental results validate the efficacy of the algorithm.

Game Theory ◽  
2017 ◽  
pp. 383-399
Author(s):  
Sungwook Kim

Computer network bandwidth can be viewed as a limited resource. The users on the network compete for that resource. Their competition can be simulated using game theory models. No centralized regulation of network usage is possible because of the diverse ownership of network resources. Therefore, the problem is of ensuring the fair sharing of network resources. If a centralized system could be developed which would govern the use of the shared resources, each user would get an assigned network usage time or bandwidth, thereby limiting each person's usage of network resources to his or her fair share. As of yet, however, such a system remains an impossibility, making the situation of sharing network resources a competitive game between the users of the network and decreasing everyone's utility. This chapter explores this competitive game.


Computer network bandwidth can be viewed as a limited resource. The users on the network compete for that resource. Their competition can be simulated using game theory models. No centralized regulation of network usage is possible because of the diverse ownership of network resources. Therefore, the problem is of ensuring the fair sharing of network resources. If a centralized system could be developed which would govern the use of the shared resources, each user would get an assigned network usage time or bandwidth, thereby limiting each person's usage of network resources to his or her fair share. As of yet, however, such a system remains an impossibility, making the situation of sharing network resources a competitive game between the users of the network and decreasing everyone's utility. This chapter explores this competitive game.


2019 ◽  
Vol 9 (1) ◽  
pp. 137
Author(s):  
Zhiyong Ye ◽  
Yuanchang Zhong ◽  
Yingying Wei

The workload of a data center has the characteristics of complexity and requirement variability. However, in reality, the attributes of network workloads are rarely used by resource schedulers. Failure to dynamically schedule network resources according to workload changes inevitably leads to the inability to achieve optimal throughput and performance when allocating network resources. Therefore, there is an urgent need to design a scheduling framework that can be workload-aware and allocate network resources on demand based on network I/O virtualization. However, in the current mainstream I/O virtualization methods, there is no way to provide workload-aware functions while meeting the performance requirements of virtual machines (VMs). Therefore, we propose a method that can dynamically sense the VM workload to allocate network resources on demand, and can ensure the scalability of the VM while improving the performance of the system. We combine the advantages of I/O para-virtualization and SR-IOV technology, and use a limited number of virtual functions (VFs) to ensure the performance of network-intensive VMs, thereby improving the overall network performance of the system. For non-network-intensive VMs, the scalability of the system is guaranteed by using para-virtualized Network Interface Cards (NICs) which are not limited in number. Furthermore, to be able to allocate the corresponding bandwidth according to the VM’s network workload, we hierarchically divide the VF’s network bandwidth, and dynamically switch between VF and para-virtualized NICs through the active backup strategy of Bonding Drive and ACPI Hotplug technology to ensure the dynamic allocation of VF. Experiments show that the allocation framework can effectively improve system network performance, in which the average request delay can be reduced by more than 26%, and the system bandwidth throughput rate can be improved by about 5%.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3444 ◽  
Author(s):  
Cheol-Ho Hong ◽  
Kyungwoon Lee ◽  
Minkoo Kang ◽  
Chuck Yoo

Fog computing is a new computing paradigm that employs computation and network resources at the edge of a network to build small clouds, which perform as small data centers. In fog computing, lightweight virtualization (e.g., containers) has been widely used to achieve low overhead for performance-limited fog devices such as WiFi access points (APs) and set-top boxes. Unfortunately, containers have a weakness in the control of network bandwidth for outbound traffic, which poses a challenge to fog computing. Existing solutions for containers fail to achieve desirable network bandwidth control, which causes bandwidth-sensitive applications to suffer unacceptable network performance. In this paper, we propose qCon, which is a QoS-aware network resource management framework for containers to limit the rate of outbound traffic in fog computing. qCon aims to provide both proportional share scheduling and bandwidth shaping to satisfy various performance demands from containers while implementing a lightweight framework. For this purpose, qCon supports the following three scheduling policies that can be applied to containers simultaneously: proportional share scheduling, minimum bandwidth reservation, and maximum bandwidth limitation. For a lightweight implementation, qCon develops its own scheduling framework on the Linux bridge by interposing qCon’s scheduling interface on the frame processing function of the bridge. To show qCon’s effectiveness in a real fog computing environment, we implement qCon in a Docker container infrastructure on a performance-limited fog device—a Raspberry Pi 3 Model B board.


Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 258
Author(s):  
Saleem Karmoshi ◽  
Shuo Wang ◽  
Naji Alhusaini ◽  
Jing Li ◽  
Ming Zhu ◽  
...  

Allocating bandwidth guarantees to applications in the cloud has become increasingly demanding and essential as applications compete to share cloud network resources. However, cloud-computing providers offer no network bandwidth guarantees in a cloud environment, predictably preventing tenants from running their applications. Existing schemes offer tenants practical cluster abstraction solutions emulating underlying physical network resources, proving impractical; however, providing virtual network abstractions has remained an essential step in the right direction. In this paper, we consider the requirements for enabling the application-aware network with bandwidth guarantees in a Virtual Data Center (VDC). We design GANA-VDC, a network virtualization framework supporting VDC application-aware networking with bandwidth guarantees in a cloud datacenter. GANA-VDC achieves scalability using an interceptor to translate OpenFlow features to prompt fine-grained Quality of Service (QoS). Facilitating the expression of diverse network resource demands, we also propose a new Virtual Network (VN) to Physical Network (PN) mapping approach, Graph Abstraction Network Architecture (GANA), which we innovatively introduce in this paper, allowing tenants to provide applications with cloud networking environment, thereby increasing the preservation performance. Our results show GANA-VDC can provide bandwidth guarantee and achieve low time complexity, yielding higher network utility.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Luis Miguel Bolivar ◽  
Ignacio Castro-Abancéns ◽  
Cristóbal Casanueva ◽  
Angeles Gallego

PurposeThe purpose of this study is to examine how access and mobilisation of network resources influence a firm's performance. It has been established that alliance portfolio (AP) network parameters shape the access to network resources; however, resource access understood as value creation differs from resource mobilisation understood as value capture. Hence, the paper contributes towards the comprehension of AP performance by examining the extent to which a firm's level of network resource mobilisation (NRM) plays a role in improving financial performance and how this strategy conditions the benefits obtained from a firm's AP.Design/methodology/approachThis study employs an interorganisational network approach to describe the APs of firms; subsequently, it examines how AP network parameters and resource mobilisation determine financial performance. To this end, sequential multiple regression models are applied to a sample from the Top International Airlines database, covering 135 portfolios that correspond to 1117 codeshare partnerships.FindingsThe analyses show that the NRM level has an inverted U-shaped relationship with revenue performance, thereby revealing the limitations and considerations in the strategic alliance strategy. In addition, the authors show how the resource mobilisation decision moderates the faculty of AP parameters to influence a firm's financial performance, thereby exposing the nuanced relationship between AP size, diversity and redundancy. The findings convey strategic and practical implications for managers regarding how to capture value from their APs.Practical implicationsThe findings suggest the need for NRM to form part of a firm's AP management capability, so that, by acquiring superior strategic knowledge in NRM, the firm is able to extract value from its AP through the optimal exploitation of complementary assets.Originality/valuePrevious research has highlighted the multidimensional nature of APs at the theoretical level; however, no simultaneous empirical analysis of various AP parameters has yet been produced. The research empirically analyses an AP network and how its parameters affect financial performance in the presence of a resource mobilisation strategy. Not only do the authors introduce the analysis of the curvilinear relationship between the level of NRM and a firm's performance, but also of its role in advancing the AP literature.


Data ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
John Sospeter ◽  
Di Wu ◽  
Saajid Hussain ◽  
Tesfanesh Tesfa

Mobile network topology changes dynamically over time because of the high velocity of vehicles. Therefore, the concept of the data dissemination scheme in a VANET environment has become an issue of debate for many research scientists. The main purpose of VANET is to ensure passenger safety application by considering the critical emergency message. The design of the message dissemination protocol should take into consideration effective data dissemination to provide a high packet data ratio and low end-to-end delay by using network resources at a minimal level. In this paper, an effective and efficient adaptive probability data dissemination protocol (EEAPD) is proposed. EEAPD comprises a delay scheme and probabilistic approach. The redundancy ratio (r) metric is used to explain the correlation between road segments and vehicles’ density in rebroadcast probability decisions. The uniqueness of the EEAPD protocol comes from taking into account the number of road segments to decide which nodes are suitable for rebroadcasting the emergency message. The last road segment is considered in the transmission range because of the probability of it having small vehicle density. From simulation results, the proposed protocol provides a better high-packet delivery ratio and low-packet drop ratio by providing better use of the network resource within low end-to-end delay. This protocol is designed for only V2V communication by considering a beaconless strategy. the simulations in this study were conducted using Ns-3.26 and traffic simulator called “SUMO”.


2015 ◽  
Vol 713-715 ◽  
pp. 2195-2198
Author(s):  
Jun Li Mao ◽  
Xiang Luo ◽  
Xiao Zhen Wang ◽  
Chao Hong Yang

Resource discovery is the key of network resource management, which includes multiple aspects, such as resource description, resource organization, and resource discovery and resource selection. For a long time, communication network resourcehas been lack of unified and standardized description, causing users difficult to precisely find related resources in demand. This paper presents a distributed resource query methods based on management domain, including distributed resource query architecture, the basic process of resource discovery, update method,query methods and so on. The method of network resources makes use of collaborative queries to realize network resource discovery according to need.


Author(s):  
TEJAL ARVIND SONAWALE ◽  
SHIKHA NEMA

Ad Hoc Networks face a lot of problems due to issues like mobility, power level, load of the network, bandwidth constraints, dynamic topology which lead to link breaks, node break down and increase in overhead. As nodes are changing their position consistently, routes are rapidly being disturbed, thereby generating route errors and new route discoveries. The need for mobility awareness is widely proclaimed. In our dissertation we present a scheme AOMDV-APLP that makes AOMDV aware of accessibility of neighbor nodes in the network. Nodes acquire the accessibility information of other nodes through routine routing operations and keep in their routing table. Based on this information route discovery is restricted to only “accessible” and “start” nodes. Further route with the strongest signal strength is selected from multiple routes using Link life value predicted by Link Breakage prediction technique. Simulation result shows that using accessibility and link life knowledge in route discovery process MAC overhead, routing overhead and average delay is reduced 3 times, and improve the Packet delivery ratio to a large extent than standard AOMDV which reflects effective use of network resources.


2021 ◽  
Author(s):  
Ze Xi Xu ◽  
Lei Zhuang ◽  
Meng Yang He ◽  
Si Jin Yang ◽  
Yu Song ◽  
...  

Abstract Virtualization and resource isolation techniques have enabled the efficient sharing of networked resources. How to control network resource allocation accurately and flexibly has gradually become a research hotspot due to the growth in user demands. Therefore, this paper presents a new edge-based virtual network embedding approach to studying this problem that employs a graph edit distance method to accurately control resource usage. In particular, to manage network resources efficiently, we restrict the use conditions of network resources and restrict the structure based on common substructure isomorphism and an improved spider monkey optimization algorithm is employed to prune redundant information from the substrate network. Experimental results showed that the proposed method achieves better performance than existing algorithms in terms of resource management capacity, including energy savings and the revenue-cost ratio.


Sign in / Sign up

Export Citation Format

Share Document