Energy Resource Optimization for Home Area Sensor Networks Using Discrete Venus Flytrap Algorithm

2021 ◽  
Vol 12 (4) ◽  
pp. 47-61
Author(s):  
Rathipriya Ramalingam ◽  
Sivabalan Settu

The energy resource selection (ERS) problem for home area sensor network is defined as the selection of the optimal external energy resource from the energy source station for the sensor nodes to avoid uninterrupted service and extends the network lifespan. In this paper, the discrete Venus fly-trap search algorithm (DVFS) is proposed to select the optimal energy source for sensor nodes in the HASN. Discrete Venus fly-trap search algorithm is a population-based, non-swarm intelligence search algorithm that copycats the foraging behaviors of Venus fly-trap plant.

2021 ◽  
Author(s):  
Sivabalan Settu ◽  
R Rathipriya

Abstract This research work examines the foraging behavior of the Carnivorous plant called Venus flytrap. These plants derive their nutrients from trapping and consuming insects and another arthropod. Unlike swarm behavior, they forage independently and autonomously. Based on this, a new non-swarm intelligence algorithm called Discrete Venus Fly-Trap Search Algorithm (DVFS) is proposed for energy resource selection for sensor nodes in the Home Area Sensor Network (HASN). Discrete Venus Fly-Trap Search Algorithm is a population-based, non-swarm intelligence search algorithm that copycats the foraging behaviors of Venus Fly-Trap Plant. The search performance of DVFS algorithm is studied by simulating in Wireless Sensor Network Toolbox in Matlab2016. The results expose that the proposed algorithm can identify optimal energy resource selection from the energy source station to provide the power supply to the nodes in HASN for the network lifespan increment.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Author(s):  
Ravichander Janapati ◽  
Ch. Balaswamy ◽  
K. Soundararajan

Localization is the key research area in wireless sensor networks. Finding the exact position of the node is known as localization. Different algorithms have been proposed. Here we consider a cooperative localization algorithm with censoring schemes using Crammer Rao bound (CRB). This censoring scheme  can improve the positioning accuracy and reduces computation complexity, traffic and latency. Particle swarm optimization (PSO) is a population based search algorithm based on the swarm intelligence like social behavior of birds, bees or a school of fishes. To improve the algorithm efficiency and localization precision, this paper presents an objective function based on the normal distribution of ranging error and a method of obtaining the search space of particles. In this paper  Distributed localization of wireless sensor networksis proposed using PSO with best censoring technique using CRB. Proposed method shows better results in terms of position accuracy, latency and complexity.  


Author(s):  
Yang Wang ◽  
Feifan Wang ◽  
Yujun Zhu ◽  
Yiyang Liu ◽  
Chuanxin Zhao

AbstractIn wireless rechargeable sensor network, the deployment of charger node directly affects the overall charging utility of sensor network. Aiming at this problem, this paper abstracts the charger deployment problem as a multi-objective optimization problem that maximizes the received power of sensor nodes and minimizes the number of charger nodes. First, a network model that maximizes the sensor node received power and minimizes the number of charger nodes is constructed. Second, an improved cuckoo search (ICS) algorithm is proposed. This algorithm is based on the traditional cuckoo search algorithm (CS) to redefine its step factor, and then use the mutation factor to change the nesting position of the host bird to update the bird’s nest position, and then use ICS to find the ones that maximize the received power of the sensor node and minimize the number of charger nodes optimal solution. Compared with the traditional cuckoo search algorithm and multi-objective particle swarm optimization algorithm, the simulation results show that the algorithm can effectively increase the receiving power of sensor nodes, reduce the number of charger nodes and find the optimal solution to meet the conditions, so as to maximize the network charging utility.


Metabolomics ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
João Fadista ◽  
Line Skotte ◽  
Julie Courraud ◽  
Frank Geller ◽  
Sanne Gørtz ◽  
...  

Abstract Introduction Infantile hypertrophic pyloric stenosis (IHPS) is caused by hypertrophy of the pyloric sphincter muscle. Objectives Since previous reports have implicated lipid metabolism, we aimed to (1) investigate associations between IHPS and a wide array of lipid-related metabolites in newborns, and (2) address whether detected differences in metabolite levels were likely to be driven by genetic differences between IHPS cases and controls or by differences in early life feeding patterns. Methods We used population-based random selection of IHPS cases and controls born in Denmark between 1997 and 2014. We randomly took dried blood spots of newborns from 267 pairs of IHPS cases and controls matched by sex and day of birth. We used a mixed-effects linear regression model to evaluate associations between 148 metabolites and IHPS in a matched case–control design. Results The phosphatidylcholine PC(38:4) showed significantly lower levels in IHPS cases (P = 4.68 × 10−8) as did six other correlated metabolites (four phosphatidylcholines, acylcarnitine AC(2:0), and histidine). Associations were driven by 98 case–control pairs born before 2009, when median age at sampling was 6 days. No association was seen in 169 pairs born in 2009 or later, when median age at sampling was 2 days. More IHPS cases than controls had a diagnosis for neonatal difficulty in feeding at breast (P = 6.15 × 10−3). Genetic variants known to be associated with PC(38:4) levels did not associate with IHPS. Conclusions We detected lower levels of certain metabolites in IHPS, possibly reflecting different feeding patterns in the first days of life.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 80
Author(s):  
John Fernando Martínez-Gil ◽  
Nicolas Alejandro Moyano-García ◽  
Oscar Danilo Montoya ◽  
Jorge Alexander Alarcon-Villamil

In this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., Δ− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced power-flow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective function.


2021 ◽  
pp. 100572
Author(s):  
Malek Alzaqebah ◽  
Khaoula Briki ◽  
Nashat Alrefai ◽  
Sami Brini ◽  
Sana Jawarneh ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


2018 ◽  
Vol 15 (2) ◽  
pp. 254-272 ◽  
Author(s):  
Umamaheswari Elango ◽  
Ganesan Sivarajan ◽  
Abirami Manoharan ◽  
Subramanian Srikrishna

Purpose Generator maintenance scheduling (GMS) is an essential task for electric power utilities as the periodical maintenance activity enhances the lifetime and also ensures the reliable and continuous operation of generating units. Though numerous meta-heuristic algorithms have been reported for the GMS solution, enhancing the existing techniques or developing new optimization procedure is still an interesting research task. The meta-heuristic algorithms are population based and the selection of their algorithmic parameters influences the quality of the solution. This paper aims to propose statistical tests guided meta-heuristic algorithm for solving the GMS problems. Design/methodology/approach The intricacy characteristics of the GMS problem in power systems necessitate an efficient and robust optimization tool. Though several meta-heuristic algorithms have been applied to solve the chosen power system operational problem, tuning of their control parameters is a protracting process. To prevail over the previously mentioned drawback, the modern meta-heuristic algorithm, namely, ant lion optimizer (ALO), is chosen as the optimization tool for solving the GMS problem. Findings The meta-heuristic algorithms are population based and require proper selection of algorithmic parameters. In this work, the ANOVA (analysis of variance) tool is proposed for selecting the most feasible decisive parameters in algorithm domain, and the statistical tests-based validation of solution quality is described. The parametric and non-parametric statistical tests are also performed to validate the selection of ALO against the various competing algorithms. The numerical and statistical results confirm that ALO is a promising tool for solving the GMS problems. Originality/value As a first attempt, ALO is applied to solve the GMS problem. Moreover, the ANOVA-based parameter selection is proposed and the statistical tests such as Wilcoxon signed rank and one-way ANOVA are conducted to validate the applicability of the intended optimization tool. The contribution of the paper can be summarized in two folds: the ANOVA-based ALO for GMS applications and statistical tests-based performance evaluation of intended algorithm.


Sign in / Sign up

Export Citation Format

Share Document