Recognition of Color Objects Using Hybrids Descriptors

Author(s):  
Driss Naji ◽  
M. Fakir ◽  
B. Bouikhalene ◽  
M. Boutaounte

In this paper, the authors came up with a different approach based on the combination of the different descriptors. For object recognition, regardless of orientation, size and position, feature vectors are computed with the help of Zernike moments and Centrist descriptors. For a large data base the fact of using the classic descriptors has never been a satisfying method for perfect recognition rates. The authors deduced that the combination of descriptors can have good recognition rates, accordingthe result of a comparative study of the different descriptors and the different combinations (Zernike + Centrist, Zernike + ACP, Centrist + ACP). The Zernike moment with Centrist descriptors ended up being the best hybrid description. For the recognition process, the authors opted for support vector machine (SVM) and Neural Networks (NN). The authors illustrate the proposed method on 3D objects using representations of two-dimensional images that are taken from different angles of view are the main features leading the authors to their objective.

2012 ◽  
Vol 562-564 ◽  
pp. 2026-2029
Author(s):  
Shu Xian Zhu ◽  
Xue Li Zhu ◽  
Sheng Hui Guo

Artificial neural networks and support vector machine (SVM), as two important tools, have widely applied in artificial intelligence and pattern recognition. In this paper, a comparative study has been done for making an analysis on their performances, when they are used in pattern recognition. Through theoretical analysis and confirmed by experimental results, a conclusion can be drawn that support vector machines have obvious advantages over those of traditional neural networks.


2020 ◽  
Vol 6 ◽  
Author(s):  
Jaime de Miguel Rodríguez ◽  
Maria Eugenia Villafañe ◽  
Luka Piškorec ◽  
Fernando Sancho Caparrini

Abstract This work presents a methodology for the generation of novel 3D objects resembling wireframes of building types. These result from the reconstruction of interpolated locations within the learnt distribution of variational autoencoders (VAEs), a deep generative machine learning model based on neural networks. The data set used features a scheme for geometry representation based on a ‘connectivity map’ that is especially suited to express the wireframe objects that compose it. Additionally, the input samples are generated through ‘parametric augmentation’, a strategy proposed in this study that creates coherent variations among data by enabling a set of parameters to alter representative features on a given building type. In the experiments that are described in this paper, more than 150 k input samples belonging to two building types have been processed during the training of a VAE model. The main contribution of this paper has been to explore parametric augmentation for the generation of large data sets of 3D geometries, showcasing its problems and limitations in the context of neural networks and VAEs. Results show that the generation of interpolated hybrid geometries is a challenging task. Despite the difficulty of the endeavour, promising advances are presented.


2015 ◽  
Vol 13 (2) ◽  
pp. 50-58
Author(s):  
R. Khadim ◽  
R. El Ayachi ◽  
Mohamed Fakir

This paper focuses on the recognition of 3D objects using 2D attributes. In order to increase the recognition rate, the present an hybridization of three approaches to calculate the attributes of color image, this hybridization based on the combination of Zernike moments, Gist descriptors and color descriptor (statistical moments). In the classification phase, three methods are adopted: Neural Network (NN), Support Vector Machine (SVM), and k-nearest neighbor (KNN). The database COIL-100 is used in the experimental results.


2008 ◽  
Vol 381-382 ◽  
pp. 439-442
Author(s):  
Qi Wang ◽  
Zhi Gang Feng ◽  
K. Shida

Least squares support vector machine (LS-SVM) combined with niche genetic algorithm (NGA) are proposed for nonlinear sensor dynamic modeling. Compared with neural networks, the LS-SVM can overcome the shortcomings of local minima and over fitting, and has higher generalization performance. The sharing function based niche genetic algorithm is used to select the LS-SVM parameters automatically. The effectiveness and reliability of this method are demonstrated in two examples. The results show that this approach can escape from the blindness of man-made choice of LS-SVM parameters. It is still effective even if the sensor dynamic model is highly nonlinear.


Sign in / Sign up

Export Citation Format

Share Document