scholarly journals Opinion Mining using Machine Learning Techniques

Sentiment analysis or opinion mining has gained much attention in recent years.With the constantly evolving social networks and internet marketing sites, reviews and blogs have been obtained among them, they act as an significant source for future analysis and better decision making. These reviews are naturally unstructured and thus require pre processing and further classification to gain the significant information for future use. These reviews and blogs can be of different types such as positive, negative and neutral . Supervised machine learning techniquess help to classify these reviews. In this paper five machine learning algorithms (K-Nearest Neighbors (KNN), Decision Tree, Artificial neural networks (ANNs), Naïve bayes and Support Vector Machine (SVM))are used for classification of sentiments. These algorithms are analyzed usingTwitter dataset. Performance analysis of these algorithms are done by using various performance measures such as Accuracy, precision, recall and F-measure. The evaluation of these techniques on Twitter datasetshowed predictive ability of Machine Learning in opinion mining

The advancement in cyber-attack technologies have ushered in various new attacks which are difficult to detect using traditional intrusion detection systems (IDS).Existing IDS are trained to detect known patterns because of which newer attacks bypass the current IDS and go undetected. In this paper, a two level framework is proposed which can be used to detect unknown new attacks using machine learning techniques. In the first level the known types of classes for attacks are determined using supervised machine learning algorithms such as Support Vector Machine (SVM) and Neural networks (NN). The second level uses unsupervised machine learning algorithms such as K-means. The experimentation is carried out with four models with NSL- KDD dataset in Openstack cloud environment. The Model with Support Vector Machine for supervised machine learning, Gradual Feature Reduction (GFR) for feature selection and K-means for unsupervised algorithm provided the optimum efficiency of 94.56 %.


2020 ◽  
Vol 17 (3) ◽  
pp. 360-383 ◽  
Author(s):  
Anantha Narayanan ◽  
Farzanah Desai ◽  
Tom Stewart ◽  
Scott Duncan ◽  
Lisa Mackay

Background: Application of machine learning for classifying human behavior is increasingly common as access to raw accelerometer data improves. The aims of this scoping review are (1) to examine if machine-learning techniques can accurately identify human activity behaviors from raw accelerometer data and (2) to summarize the practical implications of these machine-learning techniques for future work. Methods: Keyword searches were performed in Scopus, Web of Science, and EBSCO databases in 2018. Studies that applied supervised machine-learning techniques to raw accelerometer data and estimated components of physical activity were included. Information on study characteristics, machine-learning techniques, and key study findings were extracted from included studies. Results: Of the 53 studies included in the review, 75% were published in the last 5 years. Most studies predicted postures and activity type, rather than intensity, and were conducted in controlled environments using 1 or 2 devices. The most common models were support vector machine, random forest, and artificial neural network. Overall, classification accuracy ranged from 62% to 99.8%, although nearly 80% of studies achieved an overall accuracy above 85%. Conclusions: Machine-learning algorithms demonstrate good accuracy when predicting physical activity components; however, their application to free-living settings is currently uncertain.


2017 ◽  
Vol 4 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


2020 ◽  
pp. 143-163
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


Author(s):  
Tenali Pranuthi

There are various algorithms and methodologies used for automated screening of cervical cancer by segmenting and classifying cervical cancer cells into different categories. This study presents a critical review of different research papers published that integrated ML methods in screening cervical cancer via different approaches analyzed in terms of typical metrics like dataset size, drawbacks, accuracy etc. An attempt has been made to furnish the reader with an insight of Machine Learning algorithms like SVM (Support Vector Machines), k-NN (k-Nearest Neighbors), RFT (Random Forest Trees), for feature extraction and classification. This paper also covers the publicly available datasets related to cervical cancer. It presents a holistic review on the computational methods that have evolved over the period of time, in detection of malignant cells. In this paper, we are going to train our model using various machine learning techniques and all the models thus made are compared in terms of accuracy, precision and recall.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 684 ◽  
Author(s):  
V V. Ramalingam ◽  
Ayantan Dandapath ◽  
M Karthik Raja

Heart related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need of reliable, accurate and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart related diseases. This paper presents a survey of various models based on such algorithms and techniques andanalyze their performance. Models based on supervised learning algorithms such as Support Vector Machines (SVM), K-Nearest Neighbour (KNN), NaïveBayes, Decision Trees (DT), Random Forest (RF) and ensemble models are found very popular among the researchers.


Author(s):  
M. M. Ata ◽  
K. M. Elgamily ◽  
M. A. Mohamed

The presented paper proposes an algorithm for palmprint recognition using seven different machine learning algorithms. First of all, we have proposed a region of interest (ROI) extraction methodology which is a two key points technique. Secondly, we have performed some image enhancement techniques such as edge detection and morphological operations in order to make the ROI image more suitable for the Hough transform. In addition, we have applied the Hough transform in order to extract all the possible principle lines on the ROI images. We have extracted the most salient morphological features of those lines; slope and length. Furthermore, we have applied the invariant moments algorithm in order to produce 7 appropriate hues of interest. Finally, after performing a complete hybrid feature vectors, we have applied different machine learning algorithms in order to recognize palmprints effectively. Recognition accuracy have been tested by calculating precision, sensitivity, specificity, accuracy, dice, Jaccard coefficients, correlation coefficients, and training time. Seven different supervised machine learning algorithms have been implemented and utilized. The effect of forming the proposed hybrid feature vectors between Hough transform and Invariant moment have been utilized and tested. Experimental results show that the feed forward neural network with back propagation has achieved about 99.99% recognition accuracy among all tested machine learning techniques.


Author(s):  
V Umarani ◽  
A Julian ◽  
J Deepa

Sentiment analysis has gained a lot of attention from researchers in the last year because it has been widely applied to a variety of application domains such as business, government, education, sports, tourism, biomedicine, and telecommunication services. Sentiment analysis is an automated computational method for studying or evaluating sentiments, feelings, and emotions expressed as comments, feedbacks, or critiques. The sentiment analysis process can be automated using machine learning techniques, which analyses text patterns faster. The supervised machine learning technique is the most used mechanism for sentiment analysis. The proposed work discusses the flow of sentiment analysis process and investigates the common supervised machine learning techniques such as multinomial naive bayes, Bernoulli naive bayes, logistic regression, support vector machine, random forest, K-nearest neighbor, decision tree, and deep learning techniques such as Long Short-Term Memory and Convolution Neural Network. The work examines such learning methods using standard data set and the experimental results of sentiment analysis demonstrate the performance of various classifiers taken in terms of the precision, recall, F1-score, RoC-Curve, accuracy, running time and k fold cross validation and helps in appreciating the novelty of the several deep learning techniques and also giving the user an overview of choosing the right technique for their application.


Sign in / Sign up

Export Citation Format

Share Document