Optimization of Text Feature Selection Process Based on Advanced Searching for News Classification

2020 ◽  
Vol 11 (4) ◽  
pp. 1-23
Author(s):  
Khin Sandar Kyaw ◽  
Somchai Limsiroratana

Nowadays, the culture for accessing news around the world is changed from paper format to electronic and the rate of publication for newspapers and magazines on websites have increased dramatically. Therefore, the feature selection process from high-dimensional text feature set for an automatic news classification model is becoming the top challenge because irrelevant features can degrade the accuracy with high cost computation time for classification model. In this article, six-advanced search policies based on evolutionary, swarm intelligence, nature-inspired intelligence are observed for achieving the global optimal feature subset for optimal accuracy in news classification problem. According to the experimental results, the advanced search schemes that can provide flexibility in integrating classifier in accordance with its objective function such as optimal classification performance by adjusting the rate of modification parameters for the testing data.

Information ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 187
Author(s):  
Rattanawadee Panthong ◽  
Anongnart Srivihok

Liver cancer data always consist of a large number of multidimensional datasets. A dataset that has huge features and multiple classes may be irrelevant to the pattern classification in machine learning. Hence, feature selection improves the performance of the classification model to achieve maximum classification accuracy. The aims of the present study were to find the best feature subset and to evaluate the classification performance of the predictive model. This paper proposed a hybrid feature selection approach by combining information gain and sequential forward selection based on the class-dependent technique (IGSFS-CD) for the liver cancer classification model. Two different classifiers (decision tree and naïve Bayes) were used to evaluate feature subsets. The liver cancer datasets were obtained from the Cancer Hospital Thailand database. Three ensemble methods (ensemble classifiers, bagging, and AdaBoost) were applied to improve the performance of classification. The IGSFS-CD method provided good accuracy of 78.36% (sensitivity 0.7841 and specificity 0.9159) on LC_dataset-1. In addition, LC_dataset II delivered the best performance with an accuracy of 84.82% (sensitivity 0.8481 and specificity 0.9437). The IGSFS-CD method achieved better classification performance compared to the class-independent method. Furthermore, the best feature subset selection could help reduce the complexity of the predictive model.


Feature selection in multispectral high dimensional information is a hard labour machine learning problem because of the imbalanced classes present in the data. The existing Most of the feature selection schemes in the literature ignore the problem of class imbalance by choosing the features from the classes having more instances and avoiding significant features of the classes having less instances. In this paper, SMOTE concept is exploited to produce the required samples form minority classes. Feature selection model is formulated with the objective of reducing number of features with improved classification performance. This model is based on dimensionality reduction by opt for a subset of relevant spectral, textural and spatial features while eliminating the redundant features for the purpose of improved classification performance. Binary ALO is engaged to solve the feature selection model for optimal selection of features. The proposed ALO-SVM with wrapper concept is applied to each potential solution obtained during optimization step. The working of this methodology is tested on LANDSAT multispectral image.


The optimal feature subset selection over very high dimensional data is a vital issue. Even though the optimal features are selected, the classification of those selected features becomes a key complicated task. In order to handle these problems, a novel, Accelerated Simulated Annealing and Mutation Operator (ASAMO) feature selection algorithm is suggested in this work. For solving the classification problem, the Fuzzy Minimal Consistent Class Subset Coverage (FMCCSC) problem is introduced. In FMCCSC, consistent subset is combined with the K-Nearest Neighbour (KNN) classifier known as FMCCSC-KNN classifier. The two data sets Dorothea and Madelon from UCI machine repository are experimented for optimal feature selection and classification. The experimental results substantiate the efficiency of proposed ASAMO with FMCCSC-KNN classifier compared to Particle Swarm Optimization (PSO) and Accelerated PSO feature selection algorithms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surendran Rajendran ◽  
Osamah Ibrahim Khalaf ◽  
Youseef Alotaibi ◽  
Saleh Alghamdi

AbstractIn recent times, big data classification has become a hot research topic in various domains, such as healthcare, e-commerce, finance, etc. The inclusion of the feature selection process helps to improve the big data classification process and can be done by the use of metaheuristic optimization algorithms. This study focuses on the design of a big data classification model using chaotic pigeon inspired optimization (CPIO)-based feature selection with an optimal deep belief network (DBN) model. The proposed model is executed in the Hadoop MapReduce environment to manage big data. Initially, the CPIO algorithm is applied to select a useful subset of features. In addition, the Harris hawks optimization (HHO)-based DBN model is derived as a classifier to allocate appropriate class labels. The design of the HHO algorithm to tune the hyperparameters of the DBN model assists in boosting the classification performance. To examine the superiority of the presented technique, a series of simulations were performed, and the results were inspected under various dimensions. The resultant values highlighted the supremacy of the presented technique over the recent techniques.


2019 ◽  
Vol 29 (1) ◽  
pp. 1453-1467 ◽  
Author(s):  
Ritam Guha ◽  
Manosij Ghosh ◽  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Mita Nasipuri

Abstract The feature selection process is very important in the field of pattern recognition, which selects the informative features so as to reduce the curse of dimensionality, thus improving the overall classification accuracy. In this paper, a new feature selection approach named Memory-Based Histogram-Oriented Multi-objective Genetic Algorithm (M-HMOGA) is introduced to identify the informative feature subset to be used for a pattern classification problem. The proposed M-HMOGA approach is applied to two recently used feature sets, namely Mojette transform and Regional Weighted Run Length features. The experimentations are carried out on Bangla, Devanagari, and Roman numeral datasets, which are the three most popular scripts used in the Indian subcontinent. In-house Bangla and Devanagari script datasets and Competition on Handwritten Digit Recognition (HDRC) 2013 Roman numeral dataset are used for evaluating our model. Moreover, as proof of robustness, we have applied an innovative approach of using different datasets for training and testing. We have used in-house Bangla and Devanagari script datasets for training the model, and the trained model is then tested on Indian Statistical Institute numeral datasets. For Roman numerals, we have used the HDRC 2013 dataset for training and the Modified National Institute of Standards and Technology dataset for testing. Comparison of the results obtained by the proposed model with existing HMOGA and MOGA techniques clearly indicates the superiority of M-HMOGA over both of its ancestors. Moreover, use of K-nearest neighbor as well as multi-layer perceptron as classifiers speaks for the classifier-independent nature of M-HMOGA. The proposed M-HMOGA model uses only about 45–50% of the total feature set in order to achieve around 1% increase when the same datasets are partitioned for training-testing and a 2–3% increase in the classification ability while using only 35–45% features when different datasets are used for training-testing with respect to the situation when all the features are used for classification.


Author(s):  
Ritam Guha ◽  
Manosij Ghosh ◽  
Pawan Kumar Singh ◽  
Ram Sarkar ◽  
Mita Nasipuri

AbstractIn any multi-script environment, handwritten script classification is an unavoidable pre-requisite before the document images are fed to their respective Optical Character Recognition (OCR) engines. Over the years, this complex pattern classification problem has been solved by researchers proposing various feature vectors mostly having large dimensions, thereby increasing the computation complexity of the whole classification model. Feature Selection (FS) can serve as an intermediate step to reduce the size of the feature vectors by restricting them only to the essential and relevant features. In the present work, we have addressed this issue by introducing a new FS algorithm, called Hybrid Swarm and Gravitation-based FS (HSGFS). This algorithm has been applied over three feature vectors introduced in the literature recently—Distance-Hough Transform (DHT), Histogram of Oriented Gradients (HOG), and Modified log-Gabor (MLG) filter Transform. Three state-of-the-art classifiers, namely, Multi-Layer Perceptron (MLP), K-Nearest Neighbour (KNN), and Support Vector Machine (SVM), are used to evaluate the optimal subset of features generated by the proposed FS model. Handwritten datasets at block, text line, and word level, consisting of officially recognized 12 Indic scripts, are prepared for experimentation. An average improvement in the range of 2–5% is achieved in the classification accuracy by utilizing only about 75–80% of the original feature vectors on all three datasets. The proposed method also shows better performance when compared to some popularly used FS models. The codes used for implementing HSGFS can be found in the following Github link: https://github.com/Ritam-Guha/HSGFS.


2021 ◽  
pp. 1-18
Author(s):  
Zhang Zixian ◽  
Liu Xuning ◽  
Li Zhixiang ◽  
Hu Hongqiang

The influencing factors of coal and gas outburst are complex, now the accuracy and efficiency of outburst prediction and are not high, in order to obtain the effective features from influencing factors and realize the accurate and fast dynamic prediction of coal and gas outburst, this article proposes an outburst prediction model based on the coupling of feature selection and intelligent optimization classifier. Firstly, in view of the redundancy and irrelevance of the influencing factors of coal and gas outburst, we use Boruta feature selection method obtain the optimal feature subset from influencing factors of coal and gas outburst. Secondly, based on Apriori association rules mining method, the internal association relationship between coal and gas outburst influencing factors is mined, and the strong association rules existing in the influencing factors and samples that affect the classification of coal and gas outburst are extracted. Finally, svm is used to classify coal and gas outbursts based on the above obtained optimal feature subset and sample data, and Bayesian optimization algorithm is used to optimize the kernel parameters of svm, and the coal and gas outburst pattern recognition prediction model is established, which is compared with the existing coal and gas outbursts prediction model in literatures. Compared with the method of feature selection and association rules mining alone, the proposed model achieves the highest prediction accuracy of 93% when the feature dimension is 3, which is higher than that of Apriori association rules and Boruta feature selection, and the classification accuracy is significantly improved, However, the feature dimension decreased significantly; The results show that the proposed model is better than other prediction models, which further verifies the accuracy and applicability of the coupling prediction model, and has high stability and robustness.


Author(s):  
Alok Kumar Shukla ◽  
Pradeep Singh ◽  
Manu Vardhan

The explosion of the high-dimensional dataset in the scientific repository has been encouraging interdisciplinary research on data mining, pattern recognition and bioinformatics. The fundamental problem of the individual Feature Selection (FS) method is extracting informative features for classification model and to seek for the malignant disease at low computational cost. In addition, existing FS approaches overlook the fact that for a given cardinality, there can be several subsets with similar information. This paper introduces a novel hybrid FS algorithm, called Filter-Wrapper Feature Selection (FWFS) for a classification problem and also addresses the limitations of existing methods. In the proposed model, the front-end filter ranking method as Conditional Mutual Information Maximization (CMIM) selects the high ranked feature subset while the succeeding method as Binary Genetic Algorithm (BGA) accelerates the search in identifying the significant feature subsets. One of the merits of the proposed method is that, unlike an exhaustive method, it speeds up the FS procedure without lancing of classification accuracy on reduced dataset when a learning model is applied to the selected subsets of features. The efficacy of the proposed (FWFS) method is examined by Naive Bayes (NB) classifier which works as a fitness function. The effectiveness of the selected feature subset is evaluated using numerous classifiers on five biological datasets and five UCI datasets of a varied dimensionality and number of instances. The experimental results emphasize that the proposed method provides additional support to the significant reduction of the features and outperforms the existing methods. For microarray data-sets, we found the lowest classification accuracy is 61.24% on SRBCT dataset and highest accuracy is 99.32% on Diffuse large B-cell lymphoma (DLBCL). In UCI datasets, the lowest classification accuracy is 40.04% on the Lymphography using k-nearest neighbor (k-NN) and highest classification accuracy is 99.05% on the ionosphere using support vector machine (SVM).


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 602 ◽  
Author(s):  
Jaesung Lee ◽  
Jaegyun Park ◽  
Hae-Cheon Kim ◽  
Dae-Won Kim

Multi-label feature selection is an important task for text categorization. This is because it enables learning algorithms to focus on essential features that foreshadow relevant categories, thereby improving the accuracy of text categorization. Recent studies have considered the hybridization of evolutionary feature wrappers and filters to enhance the evolutionary search process. However, the relative effectiveness of feature subset searches of evolutionary and feature filter operators has not been considered. This results in degenerated final feature subsets. In this paper, we propose a novel hybridization approach based on competition between the operators. This enables the proposed algorithm to apply each operator selectively and modify the feature subset according to its relative effectiveness, unlike conventional methods. The experimental results on 16 text datasets verify that the proposed method is superior to conventional methods.


Author(s):  
ZENGLIN XU ◽  
IRWIN KING ◽  
MICHAEL R. LYU

Feature selection is an important task in pattern recognition. Support Vector Machine (SVM) and Minimax Probability Machine (MPM) have been successfully used as the classification framework for feature selection. However, these paradigms cannot automatically control the balance between prediction accuracy and the number of selected features. In addition, the selected feature subsets are also not stable in different data partitions. Minimum Error Minimax Probability Machine (MEMPM) has been proposed for classification recently. In this paper, we outline MEMPM to select the optimal feature subset with good stability and automatic balance between prediction accuracy and the size of feature subset. The experiments against feature selection with SVM and MPM show the advantages of the proposed MEMPM formulation in stability and automatic balance between the feature subset size and the prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document