Fault-Tolerance Evaluation of VANET Under Different Data Dissemination Models

Author(s):  
Awadh Moqbel Gaamel ◽  
Barakat Pravin Maratha ◽  
Tarek Rahil Sheltami ◽  
Elhadi M. Shakshuki

Mobile Ad hoc Networks (MANETs) is a collection of wireless mobile nodes, which form temporary networks over infrastructure-less environments. Over the last few years, Vehicular Ad hoc Network (VANET) technology has been considered as an active research area. VANET is a sub class of MANET with some unique characteristics such as fast vehicle speed, frequent topology changes and restricted mobility on roads. The communication between vehicles provides a new avenue for different types of applications such as safety, traffic management, entertainment, etc. These applications are categorized based on how data is transmitted from source to destination. The performance of such applications does not only depend on routing protocols, but also on the data dissemination mechanism. Data dissemination in VANETs is a significant factor, which can be accomplished using four different models: Dynamic Source Dynamic Destination (DSDD), Dynamic Source Static Destination (DSSD), Static Source Dynamic Destination (SSDD), and Static Source Static Destination (SSSD). Each one of these models is suitable for specific types of applications. In this paper, the authors study and evaluate the fault-tolerance of VANET under different data dissemination techniques in terms of throughput, average End-to-End delay, and percentage of packet loss. the authors used NCTUns 6.0 network simulator and IEEE 802.11p wireless communication standard. Their findings show that DSDV is more fault-tolerant than both DSR and AODV in terms of packet loss percentage for all dissemination techniques. However, AODV shows better performance in average End-to-End delay and throughput under DSDD and SSDD techniques.

2020 ◽  
Vol 9 (3) ◽  
pp. 40 ◽  
Author(s):  
Afsana Ahamed ◽  
Hamid Vakilzadian

A vehicular ad hoc network (VANET) is a technology in which moving cars are used as routers (nodes) to establish a reliable mobile communication network among the vehicles. Some of the drawbacks of the routing protocol, Ad hoc On-Demand Distance Vector (AODV), associated with VANETs are the end-to-end delay and packet loss. We modified the AODV routing protocols to reduce the number of route request (RREQ) and route reply (RREP) messages by adding direction parameters and two-step filtering. The two-step filtering process reduces the number of RREQ and RREP packets, reduces the packet overhead, and helps to select the stable route. In this study, we show the impact of the direction parameter in reducing the end-to-end delay and the packet loss in AODV. The simulation results show a 1.4% reduction in packet loss, an 11% reduction in the end-to-end delay, and an increase in throughput.


Author(s):  
Irma Nurlita Dewi ◽  
Rendy Munadi ◽  
Leanna Vidya Y.

Vehicular Ad hoc Network (VANET) merupakan konsep subset dari Mobile Ad hoc Networks (MANET) sebagai teknologi yang memungkinkan komunikasi Inter Vehicle Communication (IVC) dan Roadside-toVehicle (RVC).VANET dikarakteristikkan dengan membangun jaringan ad hoc yang dibentuk dari nodenode berupa kendaraan bermobilitas tinggi yang dibatasi dengan aturan lalu lintas sehingga pergerakannya disesuaikan dengan pola tertentu, tidak seperti MANET yang pergerakannya bisa random tanpa ada batasan. Dengan demikian, protokol routing konvensional berbasis topologi pada MANET dinilai tidak cocok untuk VANET. Protokol routing berbasis posisi sepeti GPSR dan GyTAR dinilai cocok untuk VANET. Hal ini tak lain karena aspek dinamika topologi pada VANET yang dapat berdampak nyata pada analisis protokol routing. Dari hasil simulasi diperoleh bahwa GyTAR unggul pada skenario lingkungan perkotaan dilihat dari seluruh parameter end-to-end delay, packet delivery ratio, packet loss dan normalized routing overhead yang lebih baik dari GPSR dengan rata-rata nilai masing-masing, yakni 2,294 ms, 0,958, 4,19%, dan 0,482. Sementara pada skenario lingkungan jalan tol GPSR lebih unggul dibandingkan GyTAR dengan rata-rata nilai end-to-end delay, packet delivery ratio, dan packet loss sebesar 2,639 ms, 0,920, dan 7,923%; namun dengan perolehan NRO yang lebih kecil oleh GyTAR, yakni sebesar 1,725.Kata Kunci: VANET, MANET , GPSR, GyTAR, IVC, SUMO


Data ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 1 ◽  
Author(s):  
John Sospeter ◽  
Di Wu ◽  
Saajid Hussain ◽  
Tesfanesh Tesfa

Mobile network topology changes dynamically over time because of the high velocity of vehicles. Therefore, the concept of the data dissemination scheme in a VANET environment has become an issue of debate for many research scientists. The main purpose of VANET is to ensure passenger safety application by considering the critical emergency message. The design of the message dissemination protocol should take into consideration effective data dissemination to provide a high packet data ratio and low end-to-end delay by using network resources at a minimal level. In this paper, an effective and efficient adaptive probability data dissemination protocol (EEAPD) is proposed. EEAPD comprises a delay scheme and probabilistic approach. The redundancy ratio (r) metric is used to explain the correlation between road segments and vehicles’ density in rebroadcast probability decisions. The uniqueness of the EEAPD protocol comes from taking into account the number of road segments to decide which nodes are suitable for rebroadcasting the emergency message. The last road segment is considered in the transmission range because of the probability of it having small vehicle density. From simulation results, the proposed protocol provides a better high-packet delivery ratio and low-packet drop ratio by providing better use of the network resource within low end-to-end delay. This protocol is designed for only V2V communication by considering a beaconless strategy. the simulations in this study were conducted using Ns-3.26 and traffic simulator called “SUMO”.


Author(s):  
Suha Sahib Oleiwi ◽  
Ghassan N. Mohammed ◽  
Israa Al_Barazanchi

The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN.


Author(s):  
Naseer Ali Husieen ◽  
Suhaidi Hassan ◽  
Osman Ghazali ◽  
Lelyzar Siregar

This paper evaluates the performance of Reliable Multipath Dynamic Source Routing Protocol (RM-DSR) protocol with different network size compared to DSR protocol. RM-DSR developed in the mobile ad-hoc network to recover from the transient failure quickly and divert the data packets into a new route before the link is disconnected. The performance of RM-DSR protocol is tested in the Network Simulator (NS-2.34) under the random way point mobility model with varying number of mobile nodes. The network size parameter is used to investigate the robustness and the efficiency of RM-DSR protocol compared to DSR protocol. The network size affects the time of the route discovery process during the route establishment and the route maintenance process which could influence the overall performance of the routing protocol. The simulation results indicate that RM-DSR outperforms DSR in terms of the packet delivery ratio, routing overhead, end-to-end delay, normalized routing load and packet drop.


2015 ◽  
Vol 72 (5) ◽  
Author(s):  
Ahmed Abu-Khadrah ◽  
Zahriladha Zakaria ◽  
Mohdazlishah Othman

Nowadays supporting quality of service (QOS) for real time application is the main challenge of the wireless area network. 802.11standards use distributed Coordination Function (DCF) protocol and Enhanced Distributed Channel Access (EDCA) protocol in the MAC layer. DCF protocol has only one queue for different data types, it deals with data depending on the arriving time. There is no priority to serve real time applications faster. However EDCA protocol has four queues and each queue works with specific data type. Voice, video, best effort and background are the different queues in the EDCA protocol. Different parameters and priorities are defined for each queue. The voice queue reserves the highest priority and serves its data first. In this paper QOS parameters are measured for both DCF and EDCA protocol by using OPNET simulation. The QOS parameters must reach the requirements to support QOS. The results show how QOS parameters do not reach the requirements when using DCF protocol. The values of the end to end delay and the packet loss percentage are 0.514second, 19.04% respectively. But, when using EDCA protocol the end to end delay becomes 0.0624 second and the percentage of the packet loss decreases until reach 0.00617%. So the QOS parameters achieve requirements with EDCA protocol and support QOS.


2018 ◽  
Vol 7 (2.24) ◽  
pp. 489
Author(s):  
Shweta Ranjan Vikas ◽  
B Priyalakshmi ◽  
Nikita Gautam ◽  
Sairam Potti

The network security must be taken into consideration in wireless sensor networks. In our project, we take sensor node data falsification (SNDF) attack using malicious nodes and co-operative detection is used. Fusioncentre collects information from the nodes created in a cluster environment and makes a global decision. The protocol used here is Ad-hoc-on demand distance vector[5] (AODV) and the performance analysis is done using parameters such as throughput and End-to-end delay. The stimulation is done in NS2 using network animator and graphical results are taken.The throughput will be increased compared to the existing system whereas End-to-End delay will be decreased.  


Author(s):  
Yahya M. Tashtoush ◽  
Mohammad A. Alsmirat ◽  
Tasneem Alghadi

Purpose The purpose of this paper is to propose, a new multi-path routing protocol that distributes packets over the available paths between a sender and a receiver in a multi-hop ad hoc network. We call this protocol Geometric Sequence Based Multipath Routing Protocol (GMRP). Design/methodology/approach GMRP distributes packets according to the geometric sequence. GMRP is evaluated using GloMoSim simulator. The authors use packet delivery ratio and end-to-end delay as the comparison performance metrics. They also vary many network configuration parameters such as number of nodes, transmission rate, mobility speed and network area. Findings The simulation results show that GMRP reduces the average end-to-end delay by up to 49 per cent and increases the delivery ratio by up to 8 per cent. Originality/value This study is the first to propose to use of geometric sequence in the multipath routing approach.


Sign in / Sign up

Export Citation Format

Share Document