QoS Evaluation of End-to-End Services in Virtualized Computing Environments

2015 ◽  
Vol 12 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Guofeng Yan ◽  
Yuxing Peng ◽  
Shuhong Chen ◽  
Pengfei You

Quality of service (QoS) optimization for end-to-end (e2e) services always depends on performance analysis in cloud-based service delivery industry. However, performance analysis of e2e services becomes difficult as the scale and complexity of virtualized computing environments increase. In this paper, the authors present a novel hierarchical stochastic approach to evaluate the QoS of e2e virtualized cloud services using Quasi-Birth Death structures, where jobs arrive according to a stochastic process and request virtual machines (VMs), which are specified in terms of resources, i.e., VM-configuration. To reduce the complexity of performance evaluation, the overall virtualized cloud services are partitioned into three sub-hierarchies. The authors analyze each individual sub-hierarchy using stochastic queueing approach. Thus, the key performance metrics of e2e cloud service QoS, such as acceptance probability and e2e response delay incurred on user requests, are obtained.

10.2196/18139 ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. e18139
Author(s):  
Piotr Pawałowski ◽  
Cezary Mazurek ◽  
Mikołaj Leszczuk ◽  
Jean-Marie Moureaux ◽  
Amine Chaabouni

The amount of medical video data that has to be securely stored has been growing exponentially. This rapid expansion is mainly caused by the introduction of higher video resolution such as 4K and 8K to medical devices and the growing usage of telemedicine services, along with a general trend toward increasing transparency with respect to medical treatment, resulting in more and more medical procedures being recorded. Such video data, as medical data, must be maintained for many years, resulting in datasets at the exabytes scale that each hospital must be able to store in the future. Currently, hospitals do not have the required information and communications technology infrastructure to handle such large amounts of data in the long run. In this paper, we discuss the challenges and possible solutions to this problem. We propose a generic architecture for a holistic, end-to-end recording and storage platform for hospitals, define crucial components, and identify existing and future solutions to address all parts of the system. This paper focuses mostly on the recording part of the system by introducing the major challenges in the area of bioinformatics, with particular focus on three major areas: video encoding, video quality, and video metadata.


2012 ◽  
Vol 241-244 ◽  
pp. 3177-3183
Author(s):  
Jie Zhang ◽  
Li Wen He ◽  
Fei Yi Huang ◽  
Bin Liu

This paper proposed a service discovery architecture (SDA) that can be applied in cloud computing environments. This architecture supports common service discovery capabilities to achieve cloud service discovery function in cloud computing environments. The main idea is that, cloud services can be divided into different cloud service domains (CSD) according to the characteristics of the functions of cloud services, each CSD has a sub-service directory, and there is also a root service directory above all sub-service directories. Setting of two-level service directories can achieve the most suitable massive cloud services quickly. Finally, through mathematical modeling, theoretical analyses, and numerical simulations, the performance analyses of the architecture are studied. The results show the validity and advantages of the SDA.


2017 ◽  
Author(s):  
◽  
Roshan Lal Neupane

Cloud-hosted services are being increasingly used in online businesses in e.g., retail, healthcare, manufacturing, entertainment due to benefits such as scalability and reliability. These benefits are fueled by innovations in orchestration of cloud platforms that make them totally programmable as Software Defined everything Infrastructures (SDxI). At the same time, sophisticated targeted attacks such as Distributed Denial-of-Service (DDoS) are growing on an unprecedented scale threatening the availability of online businesses. In this thesis, we present a novel defense system called Dolus to mitigate the impact of DDoS attacks launched against high-value services hosted in SDxI-based cloud platforms. Our Dolus system is able to initiate a pretense in a scalable and collaborative manner to deter the attacker based on threat intelligence obtained from attack feature analysis in a two-stage ensemble learning scheme. Using foundations from pretense theory in child play, Dolus takes advantage of elastic capacity provisioning via quarantine virtual machines and SDxI policy co-ordination across multiple network domains. To maintain the pretense of false sense of success after attack identification, Dolus uses two strategies: (i) dummy traffic pressure in a quarantine to mimic target response time profiles that were present before legitimate users were migrated away, and (ii) Scapy-based packet manipulation to generate responses with spoofed IP addresses of the original target before the attack traffic started being quarantined. From the time gained through pretense initiation, Dolus enables cloud service providers to decide on a variety of policies to mitigate the attack impact, without disrupting the cloud services experience for legitimate users. We evaluate the efficacy of Dolus using a GENI Cloud testbed and demonstrate its real-time capabilities to: (a) detect DDoS attacks and redirect attack traffic to quarantine resources to engage the attacker under pretense, and (b) coordinate SDxI policies to possibly block DDoS attacks closer to the attack source(s).


2021 ◽  
Author(s):  
Raed Karim

Cloud services are designed to provide users with different computing models such as software-as-a-Services (SaaS), Infrastructure-as-a-Service (IaaS), Data-as-a-Service (DaaS), and other IT related services (denoted as XaaS). Easy, scalable and on-demand cloud services are offered by cloud providers to users. With the prevalence of different types of cloud services, the task of selecting the best cloud service solution has become more and more challenging. Cloud service solutions are offered through a collaboration of different cloud services at different cloud layers. This type of collaborations is denoted as vertical service composition. Quality of Service (QoS) properties are used as differentiating factors for selecting the best services among functionally equivalent services. In this thesis, we introduce a new service selection framework for the cloud which vertically matches services offered by different cloud providers based on users’ end-to-end QoS requirements. Functional requirements can be satisfied by the required cloud service (software service, platform service, etc) alone. However, users’ QoS requirements must be satisfied using all involved cloud services in a service composition. Therefore, in order to select the best cloud service compositions for users, QoS values of these compositions must be end-to-end. To tackle the problem of computing unknown end-to-end QoS values of vertical cloud service compositions for target users (for whom these values are computed), we propose two strategies: QoS mapping and aggregation and QoS prediction. The former deals with new cloud service compositions with no prior history. Using this strategy, we can map users’ QoS requirements onto different cloud layers and then we aggregate QoS values guaranteed by cloud providers to estimate end-to-end QoS values. The latter deals with cloud service compositions for which QoS data have been recorded in an active system. Using the QoS prediction strategy, we utilize historical QoS data of previously invoked service compositions and other service and user information to predict end-to-end QoS values. The presented experimental results demonstrate the importance of considering vertically composed cloud services when computing end-to-end QoS values as opposed to traditional prediction approaches. Our QoS prediction approach outperforms other prediction approaches in terms of the prediction accuracy by at least 20%.


Author(s):  
Bhupesh Kumar Dewangan ◽  
Amit Agarwal ◽  
Venkatadri M. ◽  
Ashutosh Pasricha

Cloud computing is a platform where services are provided through the internet either free of cost or rent basis. Many cloud service providers (CSP) offer cloud services on the rental basis. Due to increasing demand for cloud services, the existing infrastructure needs to be scale. However, the scaling comes at the cost of heavy energy consumption due to the inclusion of a number of data centers, and servers. The extraneous power consumption affects the operating costs, which in turn, affects its users. In addition, CO2 emissions affect the environment as well. Moreover, inadequate allocation of resources like servers, data centers, and virtual machines increases operational costs. This may ultimately lead to customer distraction from the cloud service. In all, an optimal usage of the resources is required. This paper proposes to calculate different multi-objective functions to find the optimal solution for resource utilization and their allocation through an improved Antlion (ALO) algorithm. The proposed method simulated in cloudsim environments, and compute energy consumption for different workloads quantity and it increases the performance of different multi-objectives functions to maximize the resource utilization. It compared with existing frameworks and experiment results shows that the proposed framework performs utmost.


2013 ◽  
Vol 3 (4) ◽  
pp. 81-91 ◽  
Author(s):  
Sanjay P. Ahuja ◽  
Thomas F. Furman ◽  
Kerwin E. Roslie ◽  
Jared T. Wheeler

Amazon's Elastic Compute Cloud (EC2) Service is one of the leading public cloud service providers and offers many different levels of service. This paper looks into evaluating the memory, central processing unit (CPU), and input/output I/O performance of two different tiers of hardware offered through Amazon's EC2. Using three distinct types of system benchmarks, the performance of the micro spot instance and the M1 small instance are measured and compared. In order to examine the performance and scalability of the hardware, the virtual machines are set up in a cluster formation ranging from two to eight nodes. The results show that the scalability of the cloud is achieved by increasing resources when applicable. This paper also looks at the economic model and other cloud services offered by Amazon's EC2, Microsoft's Azure, and Google's App Engine.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xu Wu

Mobile cloud computing (MCC) has attracted extensive attention in recent years. With the prevalence of MCC, how to select trustworthy and high quality mobile cloud services becomes one of the most urgent problems. Therefore, this paper focuses on the trustworthy service selection and recommendation in mobile cloud computing environments. We propose a novel service selection and recommendation model (SSRM), where user similarity is calculated based on user context information and interest. In addition, the relational degree among services is calculated based on PropFlow algorithm and we utilize it to improve the accuracy of ranking results. SSRM supports a personalized and trusted selection of cloud services through taking into account mobile user’s trust expectation. Simulation experiments are conducted on ns3 simulator to study the prediction performance of SSRM compared with other two traditional approaches. The experimental results show the effectiveness of SSRM.


2019 ◽  
Vol 8 (3) ◽  
pp. 1457-1462

Cloud computing technology has gained the attention of researchers in recent years. Almost every application is using cloud computing in one way or another. Virtualization allows running many virtual machines on a single physical computer by sharing its resources. Users can store their data on datacenter and run their applications from anywhere using the internet and pay as per service level agreement documents accordingly. It leads to an increase in demand for cloud services and may decrease the quality of service. This paper presents a priority-based selection of virtual machines by cloud service provider. The virtual machines in the cloud datacenter are configured as Amazon EC2 and algorithm is simulated in cloud-sim simulator. The results justify that proposed priority-based virtual machine algorithm shortens the makespan, by 11.43 % and 5.81 %, average waiting time by 28.80 % and 24.50%, and cost of using the virtual machine by 21.24% and 11.54% as compared to FCFS and ACO respectively, hence improving quality of service.


Author(s):  
Anurag Choudhary

Abstract: Cloud services are being provided by various giant corporations notably Amazon Web Services, Microsoft Azure, Google Cloud Platform, and others. In this scenario, we address the most prominent web service provider, which is Amazon Web Services, which comprises the Elastic Compute Cloud functionality. Amazon offers a comprehensive package of computing solutions to let businesses establish dedicated virtual clouds while maintaining complete configuration control over their working environment. An organization needs to interact with several other technologies; however, instead of installing the technologies, the company may just buy the technology available online as a service. Amazon's Elastic Compute Cloud Web service, delivers highly customizable computing capacity throughout the cloud, allowing developers to establish applications with high scalability. Explicitly put, an Elastic Compute Cloud is a virtual platform that replicates a physical server on which you may host your applications. Instead of acquiring your own hardware and connecting it to a network, Amazon provides you with almost endless virtual machines to deploy your applications while they control the hardware. This review will focus on the quick overview of the Amazon Web Services Elastic Compute Cloud which also containing the features, pricing, and challenges. Finally, unanswered obstacles, and future research directions in Amazon Web Services Elastic Compute Cloud, are addressed. Keywords: Cloud Computing, Cloud Service Provider, Amazon Web Services, Amazon Elastic Compute Cloud, AWS EC2


Sign in / Sign up

Export Citation Format

Share Document