Irrigation Water Valuation Using Spatial Hedonic Models in GIS Environment

Author(s):  
Zisis Mallios

Hedonic pricing is an indirect valuation method that applies to heterogeneous goods investigating the relationship between the prices of tradable goods and their attributes. It can be used to measure the value of irrigation water through the estimation of the model that describes the relation between the market value of the land parcels and its characteristics. Because many of the land parcels included in a hedonic pricing model are spatial in nature, the conventional regression analysis fails to incorporate all the available information. Spatial regression models can achieve more efficient estimates because they are designed to deal with the spatial dependence of the data. In this paper, the authors present the results of an application of the hedonic pricing method on irrigation water valuation obtained using a software tool that is developed for the ArcGIS environment. This tool incorporates, in the GIS application, the estimation of two different spatial regression models, the spatial lag model and the spatial error model. It also has the option for different specifications of the spatial weights matrix, giving the researcher the opportunity to examine how it affects the overall performance of the model.

Author(s):  
Zisis Mallios

Hedonic pricing is an indirect valuation method that applies to heterogeneous goods investigating the relationship between the prices of tradable goods and their attributes. It can be used to measure the value of irrigation water through the estimation of the model that describes the relation between the market value of the land parcels and its characteristics. Because many of the land parcels included in a hedonic pricing model are spatial in nature, the conventional regression analysis fails to incorporate all the available information. Spatial regression models can achieve more efficient estimates because they are designed to deal with the spatial dependence of the data. In this paper, the authors present the results of an application of the hedonic pricing method on irrigation water valuation obtained using a software tool that is developed for the ArcGIS environment. This tool incorporates, in the GIS application, the estimation of two different spatial regression models, the spatial lag model and the spatial error model. It also has the option for different specifications of the spatial weights matrix, giving the researcher the opportunity to examine how it affects the overall performance of the model.


2013 ◽  
Vol 21 (4) ◽  
pp. 65-74 ◽  
Author(s):  
Radosław Cellmer

Abstract This paper presents the principles of studying global spatial autocorrelation in the land property market, as well as the possibilities of using these regularities for the construction of spatial regression models. Research work consisted primarily of testing the structure of the spatial weights matrix using different criteria and conducting diagnostic tests of two types of models: the spatial error model and the spatial lag model. The paper formulates the hypothesis that the application of spatial regression models greatly increases the accuracy of transaction price prediction while forming the basis for the creation of cartographic documents including, among others, maps of land value.


2009 ◽  
Vol 39 (12) ◽  
pp. 2283-2293 ◽  
Author(s):  
Qingmin Meng ◽  
Chris J. Cieszewski ◽  
Mike R. Strub ◽  
Bruce E. Borders

Tree height–diameter relationships are usually studied using linear or nonlinear models, but exogenous variables, especially spatially autocorrelated and dependent variables of tree diameter or height, are not often considered in height–diameter modeling. Three types of spatial regression models — spatial lag model, spatial error model, and spatial Durbin process model — are explored in this study. The height–diameter relationships are modeled using the spatial regression models to investigate the effects of spatial dependence and spatial autocorrelation and the roles of the exogenous variables generated by neighboring trees. Case study 1 shows that the spatial lag model should be used to analyze height–diameter relationships, in which heights of neighboring trees, which are exogenous variables, and the endogenous variable DBH significantly affect height growth. Case study 2 shows that the spatial error model performs better than other models, and that height growth is not only affected by its endogenous variable diameter but also by unobserved variables that vary spatially and result in residual spatial autocorrelation. Spatial regression models are an approach to height–diameter modeling that provide insight into how the endogenous variable diameter, the exogenous variables height and (or) diameter of neighboring trees, and locally varied but unobserved environmental or ecological variables contribute to height growth.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1209
Author(s):  
Shichuan Yu ◽  
Fei Wang ◽  
Mei Qu ◽  
Binhou Yu ◽  
Zhong Zhao

Changwu County is a typical soil and water loss area on the Loess Plateau. Soil erosion is an important ecological process, and the impact of land use/cover change on soil erosion has received much attention. The present study used remote sensing images of the study area in 1987, 1997, 2007, and 2017 to analyze the land use/cover change (LULCC), and the RUSLE model was applied to estimate the soil erosion in different times. We exploited the Sankey diagram to visualize the spatiotemporal changes in land use/cover and soil erosion. We planned to obtain the most suitable model by comparing the application of different spatial regression models (Geographically weighted regression model, Spatial lag model, Spatial error model) and Ordinary least squares in LULCC and soil erosion changes. The results revealed that land use/cover has significantly changed in the last 30 years. From 1987 to 1997, cropland expansion came mainly from planted land and orchards, which transformed 68.99 km2 and 64.93 km2, respectively. In 1997–2007, the planted land increase was mainly through the conversion of cropland. In 2007–2017, the increase in orchard area came mainly from cropland. The forest land increase was mainly from the planted land. Soil erosion in Changwu County was dominated by slight erosion and light erosion, although the area of slight erosion and light erosion continued to decrease. The annual average soil erosion increased, which was estimated at 977.84 ton km−2 year−1, 1305.17 ton km−2 year−1, 1310.60 ton km−2 year−1, and 1891.46 ton km−2 year−1 in 1987, 1997, 2007, and 2017, respectively. These amounts of transformation mainly occurred when slight erosion was converted to light erosion, light erosion was converted to moderate erosion, and moderate erosion was converted to light and severe erosion. The Spatial lag model and Spatial error model have higher accuracy than the Geographically weighted regression model and Ordinary least squares when fitting the effect of LULCC and soil erosion change, where the accuracy exceeded 0.62 in different periods.


2020 ◽  
Author(s):  
Md. Hamidu Rahman ◽  
Niaz Mahmud Zafri ◽  
Fajle Rabbi Ashik ◽  
Md Waliullah

The outbreak of the COVID-19 pandemic is an unprecedented shock throughout the world which leads to generate a massive social, human, and economic crisis. However, there is a lack of research on geographic modeling of COVID-19 as well as identification of contributory factors affecting the COVID-19 in the context of developing countries. To fulfill the gap, this study aimed to identify the potential factors affecting the COVID-19 incidence rates at the district-level in Bangladesh using spatial regression model (SRM). Therefore, data related to 32 demographic, economic, weather, built environment, health, and facilities related factors were collected and analyzed to explain the spatial variability of this disease incidence. Three global (Ordinary least squares (OLS), spatial lag model (SLM) and spatial error model (SEM)) and one local (geographically weighted regression (GWR)) SRMs were developed in this study. The results of the models showed that four factors significantly affected the COVID-19 incidence rates in Bangladesh. Those four factors are urban population percentage, monthly consumption, number of health workers, and distance from the capital. Among the four developed models, the GWR model performed the best in explaining the variation of COVID-19 incidence rates across Bangladesh with a R square value of 78.6%. Findings from this research offer a better insight into the COVID-19 situation and would help to develop policies aimed to prevent the future epidemic crisis.


2019 ◽  
pp. 004912411988246 ◽  
Author(s):  
Tobias Rüttenauer

Spatial regression models provide the opportunity to analyze spatial data and spatial processes. Yet, several model specifications can be used, all assuming different types of spatial dependence. This study summarizes the most commonly used spatial regression models and offers a comparison of their performance by using Monte Carlo experiments. In contrast to previous simulations, this study evaluates the bias of the impacts rather than the regression coefficients and additionally provides results for situations with a nonspatial omitted variable bias. Results reveal that the most commonly used spatial autoregressive and spatial error specifications yield severe drawbacks. In contrast, spatial Durbin specifications (SDM and SDEM) and the simple spatial lag of X (SLX) provide accurate estimates of direct impacts even in the case of misspecification. Regarding the indirect “spillover” effects, several—quite realistic—situations exist in which the SLX outperforms the more complex SDM and SDEM specifications.


2021 ◽  
Vol 12 (4) ◽  
pp. 58-74
Author(s):  
Ortis Yankey ◽  
Prince M. Amegbor ◽  
Marcellinus Essah

This paper examined the effect of socio-economic and environmental factors on obesity in Cleveland (Ohio) using an OLS model and three spatial regression models: spatial error model, spatial lag model, and a spatial error model with a spatially lagged response (SEMSLR). Comparative assessment of the models showed that the SEMSLR and the spatial error models were the best models. The spatial effect from the various spatial regression models was statistically significant, indicating an essential spatial interaction among neighboring geographic units and the need to account for spatial dependency in obesity research. The authors also found a statistically significant positive association between the percentage of families below poverty, Black population, and SNAP recipient with obesity rate. The percentage of college-educated had a statistically significant negative association with the obesity rate. The study shows that health outcomes such as obesity are not randomly distributed but are more clustered in deprived and marginalized neighborhoods.


2019 ◽  
Vol 28 (2) ◽  
pp. 284-292 ◽  
Author(s):  
Garrett N. Vande Kamp

While the spatial weights matrix $\boldsymbol{W}$ is at the core of spatial regression models, there is a scarcity of techniques for validating a given specification of $\boldsymbol{W}$. I approach this problem from a measurement error perspective. When $\boldsymbol{W}$ is inflated by a constant, a predictable form of endogeneity occurs that is not problematic in other regression contexts. I use this insight to construct a theoretically appealing test and control for the validity of $\boldsymbol{W}$ that is tractable in panel data, which I call the K test. I demonstrate the utility of the test using Monte Carlo simulations.


2018 ◽  
Vol 3 (335) ◽  
pp. 63-74
Author(s):  
Ewa Katarzyna Pośpiech ◽  
Adrianna Mastalerz-Kodzis

The article analyses the employment characteristics. The employment rate was studied in selected regions of Europe, and subsequently, for selected variables: total population employed, women employed and men employed, classic econometric models were constructed and the necessity of including the spatial factor in the process of modelling was verified. The demographic variables and GDP per capita were chosen as explaining variables of the model. It was analysed whether including a spatial approach in the models would improve their quality. Two basic spatial models were taken into consideration: the spatial error model and the spatial lag model, the former of which turned out to be the right tool for the analyses.


2021 ◽  
Vol 24 (5) ◽  
pp. 529-544
Author(s):  
Minki Sung ◽  
Junghoon Ki

Background and objective: A great deal of previous research has highlighted the value of educational and cultural facilities embedded in housing prices, by taking a large spatial area as the focus, such as the city or district level. However, few studies have investigated the extent to which educational and cultural facilities influence the formation of housing prices from an accessibility perspective. This study aims to identify the value of educational and cultural facilities embedded in the housing prices in Seoul Metropolitan City with a focus on the concept of the residents’ neighbourhood and accessibility. Methods: To this end, this research used a spatial regression model with educational and cultural facilities as the independent variables and housing prices as the dependent variable. The model assessed the accessibility of cultural and educational facilities by considering geographic effects. Results: The findings are as follows. First, the spatial error model was found to be the best fit for multi-unit housing, while the spatial lag model was more appropriate for single-unit housing and apartments. Second, private educational facilities and art museums had positive effects on single- and multi-unit housing prices, while historical sites had a negative effect. Finally, private educational facilities positively influenced apartment prices, whereas public libraries and urban park areas had a negative effect. Conclusion: These findings indicate that the accessibility of educational and cultural facilities reflects residents’ preferences and needs, which will ultimately influence housing prices.


Sign in / Sign up

Export Citation Format

Share Document