On Quality of Experience in Remote Visualization on Mobile Devices

2010 ◽  
Vol 2 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Gianluca Paravati ◽  
Andrea Sanna ◽  
Fabrizio Lamberti ◽  
Luigi Ciminiera

Quality of Experience (QoE) is a relatively new concept which represents a way of measuring user satisfaction in the use of a certain kind of service. This work investigates issues related to the QoE in manipulating 3D scenes on mobile devices, by focusing on scenarios based on the remote visualization paradigm where a remote server is in charge of computing a flow of compressed images to be delivered to client devices. A novel approach able to dynamically set the encoding parameters at the server side is presented; the considered parameters are frame resolution, frame rate and image quality. The proposed solution is able to tune the above parameters according to both user preferences and network performance. Experimental tests are exploited to assess the relationship between the involved parameters and the QoE. Results obtained by considering low resource hardware (e.g. mobile devices) and unreliable connections (e.g. wireless networks) are presented. User feedback proves the effectiveness of the proposed approach.

Author(s):  
Gianluca Paravati ◽  
Andrea Sanna ◽  
Fabrizio Lamberti ◽  
Luigi Ciminiera

Quality of Experience (QoE) is a relatively new concept which represents a way of measuring user satisfaction in the use of a certain kind of service. This work investigates issues related to the QoE in manipulating 3D scenes on mobile devices, by focusing on scenarios based on the remote visualization paradigm where a remote server is in charge of computing a flow of compressed images to be delivered to client devices. A novel approach able to dynamically set the encoding parameters at the server side is presented; the considered parameters are frame resolution, frame rate and image quality. The proposed solution is able to tune the above parameters according to both user preferences and network performance. Experimental tests are exploited to assess the relationship between the involved parameters and the QoE. Results obtained by considering low resource hardware (e.g. mobile devices) and unreliable connections (e.g. wireless networks) are presented. User feedback proves the effectiveness of the proposed approach.


Author(s):  
Decebal Constantin Mocanu ◽  
Giuliano Santandrea ◽  
Walter Cerroni ◽  
Franco Callegati ◽  
Antonio Liotta

Author(s):  
Umar Toseef ◽  
Manzoor Ahmed Khan

In its most generic sense, the user-centric view in telecommunications considers that the users are free from subscription to any one network operator and can instead dynamically choose the most suitable transport infrastructure from the available network providers for their terminal and application requirements. In this approach, the decision of interface selection is delegated to the mobile terminal enabling end users to exploit the best available characteristics of different network technologies and network providers, with the objective of increased satisfaction. In order to more accurately express the user satisfaction in telecommunications, a more subjective and application-specific measure, namely, the Quality-of-Experience (QoE) is introduced. QoE is the core requirement in future wireless networks and provisions. It is a framework that optimizes the global system of networks and users in terms of efficient resource utilization and meeting user preferences (guaranteeing certain Quality-of-Service [QoS] requirements). A number of solution frameworks to address the mentioned problems using different theoretical approaches are proposed in the research literature. Such scholarly approaches need to be evaluated using simulation platforms (e.g., OPNET, NS2, OMNET++, etc.). This chapter focuses on developing the simulation using a standard discrete event network simulator, OPNET. It outlines the general development procedures of different components in simulation and details the following important aspects: Long Term Evolution (LTE) network component development, impairment entity development, implementing IPv6 flow management, developing an integrated heterogeneous scenario with LTE and WLAN, implementing an example scenario, and generating and analyzing the results.


Author(s):  
Cristina Hava Muntean ◽  
Gabriel-Miro Muntean

Lately, user quality of experience (QoE) during their interaction with a system is a significant factor in the assessment of most systems. However, user QoE is dependent not only on the content served to the users, but also on the performance of the service provided. This chapter describes a novel QoE layer that extends the features of classic adaptive e-learning systems in order to consider delivery performance in the adaptation process and help in providing good user perceived QoE during the learning process. An experimental study compared a classic adaptive e-learning system with one enhanced with the proposed QoE layer. The result analysis compares learner outcome, learning performance, visual quality and usability of the two systems and shows how the QoE layer brings significant benefits to user satisfaction improving the overall learning process.


Author(s):  
Jeevan Pokhrel ◽  
Natalia Kushik ◽  
Bachar Wehbi ◽  
Nina Yevtushenko ◽  
Ana Rosa Cavalli

This chapter introduces the overall concept of multimedia Quality of Experience (QoE) over the Internet. It presents all the elements of multimedia QoE ecosystem and emphasizes their roles in determining the user satisfaction. The chapter also presents different multimedia transmission components and how these components contribute to successful transmission of the media content. In addition, some key performance indicators relevant to the multimedia QoE are presented with more emphasis on network and application level indicators. Furthermore, different QoE estimation methods and techniques along with QoS/QoE learning algorithms are presented. Finally, the chapter includes some of the future challenges and issues related to multimedia QoE.


Author(s):  
Hong Sun ◽  
Ning Gui ◽  
Chris Blondia

Today, technologies are providing mobile terminals with much more powerful computational abilities. Such improvement has made it possible to run many complex applications on mobile devices. However, many of these new applications are also resource demanding. Lacking sufficient resources would cause performance failures and impact negatively on the users’ quality of experience. In order to improve this, it is important to provide the users with an easy access to specifying their requirements. It is also crucial to monitor the system resources and make corresponding adaptation immediately according to the user’s specifications. In this paper, the authors propose adaptation strategies that flexibly combine the process of monitoring and adaptation, which provides an easy way to specify user’s requirements. By tuning the quality of service, the applications’ demand on system resources is reduced, thus decreasing the chances of performance failures and improving the users’ quality of experience.


Author(s):  
Ayisat Wuraola Yusuf-Asaju ◽  
Zulkhairi Md. Dahalin ◽  
Azman Ta’a

The increase in the usage of different mobile internet applications can cause deterioration in the mobile network performance. Such deterioration often declines the performance of the mobile network services that can influence the mobile Internet user’s experience, which can make the internet users switch between different mobile network operators to get good user experience. In this case, the success of mobile network operators primarily depends on the ability to ensure good quality of experience (QoE), which is a measure of users’ perceived quality of mobile Internet service. Traditionally, QoE is usually examined in laboratory experiments to enable a fixed contextual factor among the participants even though the results derived from these laboratory experiments presented an estimated mean opinion score representing perceived QoE. The use of user experience dataset involving time and location gathered from the mobile network traffic for modelling perceived QoE is still limited in the literature. The mobile Internet user experience dataset involving the time and location constituted in the mobile network can be used by the mobile network operators to make data-driven decisions to deal with disruptions observed in the network performance and provide an optimal solution based on the insights derived from the user experience data. Therefore, this paper proposed a framework for modelling mobile network QoE using the big data analytics approach. The proposed framework describes the process of estimating or predicting perceived QoE based on the datasets obtained or gathered from the mobile network to enable the mobile network operators effectively to manage the network performance and provide the users a satisfactory mobile Internet QoE.  


2019 ◽  
Vol 15 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Ines Ramadža ◽  
Vesna Pekić ◽  
Julije Ožegović

A common reason for changing the chosen service provider is the users' perception of service. Quality of Experience (QoE) describes the end user's perception of service while using it. A frequent cause of QoE degradation is inadequate traffic routing, where, other than throughput, selected routes do not satisfy minimum network requirements for the given service or services. In order to enable QoE-driven routing, per traffic type defined routing criteria are required. Our goal was to obtain those criteria for relevant services of a telecom operator. For the purpose of identifying services of interest, we first provide short results of user traffic analysis within the telecom operator network. Next, our work presents testbed measurements which explore the impact of packet loss and delay on user QoE for video, voice, and management traffic. For video services, we investigated separately multicast delivery, unicast HTTP Live Streaming (HLS), and unicast Real Time Streaming Protocol (RTSP) traffic. Applying a threshold to QoE values, from the measured dependencies we extracted minimum network performance criteria for the investigated different types of traffic. Finally, we provide a comparison with results available in the literature on the topic.


2020 ◽  
Vol 12 (7) ◽  
pp. 121 ◽  
Author(s):  
Chaminda Hewage ◽  
Erhan Ekmekcioglu

Quality of Experience (QoE) is becoming an important factor of User-Centred Design (UCD). The deployment of pure technical measures such as Quality of Service (QoS) parameters to assess the quality of multimedia applications is phasing out due to the failure of those methods to quantify true user satisfaction. Though significant research results and several deployments have occurred and been realized over the last few years, focusing on QoE-based multimedia technologies, several issues both of theoretical and practical importance remain open. Accordingly, the papers of this Special Issue are significant contribution samples within the general ecosystem highlighted above, ranging from QoE in the capture, processing and consumption of next-generation multimedia applications. In particular, a total of five excellent articles have been accepted, following a rigorous review process, which address many of the aforementioned challenges and beyond.


Sign in / Sign up

Export Citation Format

Share Document