scholarly journals Genetic diversity of 16S rRNA and mcrA genes from methanogenic archaeas

2020 ◽  
Vol 42 ◽  
pp. e49877
Author(s):  
Keyla Vitoria Marques Xavier ◽  
Eden Silva e Souza ◽  
Erick de Aquino Santos ◽  
Michely Correia Diniz

Methanogenic archaeas are found in aquatic and terrestrial environments and are fundamental in the conversion of organic matter into methane, a gas that has a potential use as renewable source of energy, which is also considered as one of the main agents of the greenhouse effect. The vast majority of microbial genomes can be identified by a conservative molecular marker, the 16S ribosomal gene. However, the mcrA gene have been using in studies of methanogenic archaea diversity as an alternative marker, highly conserved and present only in methanogens. This gene allows the expression of the enzyme Methyl-coenzyme M reductase, the main agent in converting by-products of anaerobic digestion into methane. In this context, we aimed to study the genetic diversity of mcrA and 16S rRNA genes sequences available in databases. The nucleotide sequences were selected from the NCBI. The heterozygosity and molecular diversity indexes were calculated using the Arlequin 3.5 software, with plots generated by package R v3.0. The diversity and heterozygosity indices for both genes may have been influenced by the number and size of the sequences. Descriptive analysis of genetic diversity generated by sequences deposited in databases allowed a detailed study of these molecules. It is known that the organisms in a population are genetically distinct, and that, despite having similarities in their gene composition, the differences are essential for their adaptation to different environments.

2006 ◽  
Vol 73 (1) ◽  
pp. 353-356 ◽  
Author(s):  
Suwat Saengkerdsub ◽  
Robin C. Anderson ◽  
Heather H. Wilkinson ◽  
Woo-Kyun Kim ◽  
David J. Nisbet ◽  
...  

ABSTRACT By using molecular methods for the identification and quantification of methanogenic archaea in adult chicken ceca, 16S rRNA genes of 11 different phylotypes, 10 of which were 99% similar to Methanobrevibacter woesei, were found. Methanogen populations, as assessed by cultivation, and the 16S rRNA copy number were between 6.38 and 8.23 cells/g (wet weight) and 5.50 and 7.19 log10/g (wet weight), respectively.


2020 ◽  
Vol 13 (7) ◽  
pp. 1462-1472
Author(s):  
Haitham Elbir ◽  
Faisal Almathen ◽  
Ayman Elnahas

Background and Aim: Hyalomma dromedarii ticks are vectors of disease agents and hosts of Francisella-like endosymbionts (FLEs). Knowledge about intraspecific genetic variation among H. dromedarii and its Francisella species is limited. The aims of this study were to investigate whether certain H. dromedarii genotypes are specialized in carrying specific Francisella species genotypes and scrutinize the population structure of H. dromedarii ticks in Saudi Arabia. Materials and Methods: We collected 151 H. dromedarii ticks from 33 camels from 13 locations in Saudi Arabia. The second internal transcribed spacer (ITS2), cytochrome c oxidase subunit-1(COI), and 16S rRNA genes were used for single-and multi-locus sequence typing and phylogenetic analyses. H. dromedarii-borne Francisella was screened using the tul4 gene and 16S rRNA Francisella-specific primers followed by amplicon Sanger sequencing. Results: Single-locus typing of ticks using ITS2, 16S rRNA, and COI genes yielded 1, 10, and 31 sequence types (ST), respectively, with pairwise sequence similarity of 100% for ITS2, 99.18-99.86% for COI, and 99.50-99.75% for 16S rRNA. COI sequence analysis indicated a lack of strict geographical structuration, as ST15 was found in both Saudi Arabia and Kenya. In contrast, multilocus sequence typing resolved 148 H. dromedarii ticks into 39 genotypes of ticks and three genotypes of FLEs. The ST2-FLE genotype was carried by the tick genotype ST35, while the ST1-FLE genotype and 41.89% of the ST3-FLE genotype were carried by the tick genotype ST32. Accordingly, there appeared to be no specialization of certain tick genotypes to harbor-specific FLE genotypes. Conclusion: For the 1st time, we have provided an overview of the population structure of H. dromedarii ticks and FLE strains. We found a low level of genetic diversity among FLEs and non-specialized circulation of FLEs among H. dromedarii ticks.


Acta Naturae ◽  
2012 ◽  
Vol 4 (4) ◽  
pp. 91-97 ◽  
Author(s):  
A. M. Ziganshin ◽  
E. E. Ziganshina ◽  
S. Kleinsteuber ◽  
J. Pröter ◽  
O. N. Ilinskaya

This work is devoted to the investigation of the methanogenic archaea involved in anaerobic digestion of cattle manure and maize straw on the basis of terminal restriction fragment length polymorphism (TRFLP) analysis of archaeal 16S rRNA genes. The biological diversity and dynamics of methanogenic communities leading to anaerobic degradation of agricultural organic wastes with biogas production were evaluated in laboratory-scale digesters. T-RFLP analysis, along with the establishment of archaeal 16S rRNA gene clone libraries, showed that the methanogenic consortium consisted mainly of members of the genera Methanosarcina and Methanoculleus, with a predominance of Methanosarcina spp. throughout the experiment.


1998 ◽  
Vol 64 (9) ◽  
pp. 3464-3472 ◽  
Author(s):  
David C. Gillan ◽  
Arjen G. C. L. Speksnijder ◽  
Gabriel Zwart ◽  
Chantal De Ridder

The shell of the bivalve Montacuta ferruginosa, a symbiont living in the burrow of an echinoid, is covered with a rust-colored biofilm. This biofilm includes different morphotypes of bacteria that are encrusted with a mineral rich in ferric ion and phosphate. The aim of this research was to determine the genetic diversity and phylogenetic affiliation of the biofilm bacteria. Also, the possible roles of the microorganisms in the processes of mineral deposition within the biofilm, as well as their impact on the biology of the bivalve, were assessed by phenotypic inference. The genetic diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis of short (193-bp) 16S ribosomal DNA PCR products obtained with primers specific for the domain Bacteria. This analysis revealed a diverse consortium; 11 to 25 sequence types were detected depending on the method of DNA extraction used. Individual biofilms analyzed by using the same DNA extraction protocol did not produce identical DGGE profiles. However, different biofilms shared common bands, suggesting that similar bacteria can be found in different biofilms. The phylogenetic affiliations of the sequence types were determined by cloning and sequencing the 16S rRNA genes. Close relatives of the genera Pseudoalteromonas,Colwellia, and Oceanospirillum (members of the γ-Proteobacteria lineage), as well as Flexibacter maritimus (a member of theCytophaga-Flavobacter-Bacteroides lineage), were found in the biofilms. We inferred from the results that some of the biofilm bacteria could play a role in the mineral formation processes.


2012 ◽  
Vol 78 (23) ◽  
pp. 8245-8253 ◽  
Author(s):  
Kristina Paul ◽  
James O. Nonoh ◽  
Lena Mikulski ◽  
Andreas Brune

ABSTRACTTheEuryarchaeotacomprise both methanogenic and nonmethanogenic orders and many lineages of uncultivated archaea with unknown properties. One of these deep-branching lineages, distantly related to theThermoplasmatales, has been discovered in various environments, including marine habitats, soil, and also the intestinal tracts of termites and mammals. By comparative phylogenetic analysis, we connected this lineage of 16S rRNA genes to a large clade of unknownmcrAgene sequences, a functional marker for methanogenesis, obtained from the same habitats. The identical topologies of 16S rRNA andmcrAgene trees and the perfect congruence of all branches, including several novel groups that we obtained from the guts of termites and cockroaches, strongly suggested that they stem from the same microorganisms. This was further corroborated by two highly enriched cultures of closely related methanogens from the guts of a higher termite (Cubitermes ugandensis) and a millipede (Anadenobolussp.), which represented one of the arthropod-specific clusters in the respective trees. Numerous other pairs of habitat-specific sequence clusters were obtained from the guts of other termites and cockroaches but were also found in previously published data sets from the intestinal tracts of mammals (e.g., rumen cluster C) and other environments. Together with the recently describedMethanomassiliicoccus luminyensisisolated from human feces, which falls into rice cluster III, the results of our study strongly support the idea that the entire clade of “unculturedThermoplasmatales” in fact represents the seventh order of methanogenic archaea, for which the provisional name “Methanoplasmatales” is proposed.


2014 ◽  
Vol 81 (2) ◽  
pp. 604-613 ◽  
Author(s):  
David Wilkins ◽  
Xiao-Ying Lu ◽  
Zhiyong Shen ◽  
Jiapeng Chen ◽  
Patrick K. H. Lee

ABSTRACTMethanogenic archaea play a key role in biogas-producing anaerobic digestion and yet remain poorly taxonomically characterized. This is in part due to the limitations of low-throughput Sanger sequencing of a single (16S rRNA) gene, which in the past may have undersampled methanogen diversity. In this study, archaeal communities from three sludge digesters in Hong Kong and one wastewater digester in China were examined using high-throughput pyrosequencing of the methyl coenzyme M reductase (mcrA) and 16S rRNA genes.Methanobacteriales,Methanomicrobiales, andMethanosarcinaleswere detected in each digester, indicating that both hydrogenotrophic and acetoclastic methanogenesis was occurring. Two sludge digesters had similar community structures, likely due to their similar design and feedstock. Taxonomic classification of themcrAgenes suggested that these digesters were dominated by acetoclastic methanogens, particularlyMethanosarcinales, while the other digesters were dominated by hydrogenotrophicMethanomicrobiales. The proposed euryarchaeotal orderMethanomassiliicoccalesand the uncultured WSA2 group were detected with the 16S rRNA gene, and potentialmcrAgenes for these groups were identified. 16S rRNA gene sequencing also recovered several crenarchaeotal groups potentially involved in the initial anaerobic digestion processes. Overall, the two genes produced different taxonomic profiles for the digesters, while greater methanogen richness was detected using themcrAgene, supporting the use of this functional gene as a complement to the 16S rRNA gene to better assess methanogen diversity. A significant positive correlation was detected between methane production and the abundance ofmcrAtranscripts in digesters treating sludge and wastewater samples, supporting themcrAgene as a biomarker for methane yield.


2019 ◽  
Vol 62 (1) ◽  
pp. 325-333 ◽  
Author(s):  
Linjun Yan ◽  
Yifan She ◽  
Mauricio A. Elzo ◽  
Chunlei Zhang ◽  
Xingtang Fang ◽  
...  

Abstract. The objective of this research was to characterize the genetic diversity and phylogenetic diversity among 12 cattle breeds (10 Chinese breeds and two foreign taurine breeds as controls) utilizing gene mtDNA 16S rRNA. The complete sequences of the mtDNA 16S rRNA genes of the 251 animals were 1570 bp long. The mean percentages of the four nitrogen bases were 37.8 % for adenine (A), 23.7 % for thymine (T), 20.9 % for cytosine (C), and 17.6 % for guanine (G). The mtDNA 16S rRNA gene base percentages had a strong bias towards A + T. All detected nucleotide variations in gene mtDNA 16S rRNA were either transitions (62.3 %) or transversions (37.7 %); no indels (insertions and deletions) were found. A total of 40 haplotypes were constructed based on these mutations. A total of 36 haplotypes of these 40 haplotypes were present in 10 Chinese cattle breeds. The haplotype diversity of all Chinese cattle populations was 0.903±0.077, while the nucleotide diversity was 0.0071±0.0039. Kimura's two-parameter genetic distances between pairs of the studied 12 breeds ranged from 0.001 to 0.010. The phylogenetic analysis assigned the 10 Chinese breeds to two distinct lineages that likely differed in their percentage of Bos taurus and Bos indicus ancestry.


2011 ◽  
Vol 78 (2) ◽  
pp. 393-401 ◽  
Author(s):  
Mark J. Krzmarzick ◽  
Benjamin B. Crary ◽  
Jevon J. Harding ◽  
Oyenike O. Oyerinde ◽  
Alessandra C. Leri ◽  
...  

ABSTRACTThe phylumChloroflexicontains several isolated bacteria that have been found to respire a diverse array of halogenated anthropogenic chemicals. The distribution and role of theseChloroflexiin uncontaminated terrestrial environments, where abundant natural organohalogens could function as potential electron acceptors, have not been studied. Soil samples (116 total, including 6 sectioned cores) from a range of uncontaminated sites were analyzed for the number ofDehalococcoides-likeChloroflexi16S rRNA genes present.Dehalococcoides-likeChloroflexipopulations were detected in all but 13 samples. The concentrations of organochlorine ([organochlorine]), inorganic chloride, and total organic carbon (TOC) were obtained for 67 soil core sections. The number ofDehalococcoides-likeChloroflexi16S rRNA genes positively correlated with [organochlorine]/TOC while the number ofBacteria16S rRNA genes did not.Dehalococcoides-likeChloroflexiwere also observed to increase in number with a concomitant accumulation of chloride when cultured with an enzymatically produced mixture of organochlorines. This research provides evidence that organohalide-respiringChloroflexiare widely distributed as part of uncontaminated terrestrial ecosystems, they are correlated with the fraction of TOC present as organochlorines, and they increase in abundance while dechlorinating organochlorines. These findings suggest that organohalide-respiringChlorofleximay play an integral role in the biogeochemical chlorine cycle.


2005 ◽  
Vol 71 (8) ◽  
pp. 4592-4601 ◽  
Author(s):  
Ashita Dhillon ◽  
Mark Lever ◽  
Karen G. Lloyd ◽  
Daniel B. Albert ◽  
Mitchell L. Sogin ◽  
...  

ABSTRACT The methanogenic community in hydrothermally active sediments of Guaymas Basin (Gulf of California, Mexico) was analyzed by PCR amplification, cloning, and sequencing of methyl coenzyme M reductase (mcrA) and 16S rRNA genes. Members of the Methanomicrobiales and Methanosarcinales dominated the mcrA and 16S rRNA clone libraries from the upper 15 cm of the sediments. Within the H2/CO2- and formate-utilizing family Methanomicrobiales, two mcrA and 16S rRNA lineages were closely affiliated with cultured species of the genera Methanoculleus and Methanocorpusculum. The most frequently recovered mcrA PCR amplicons within the Methanomicrobiales did not branch with any cultured genera. Within the nutritionally versatile family Methanosarcinales, one 16S rRNA amplicon and most of the mcrA PCR amplicons were affiliated with the obligately acetate utilizing species Methanosaeta concilii. The mcrA clone libraries also included phylotypes related to the methyl-disproportionating genus Methanococcoides. However, two mcrA and two 16S rRNA lineages within the Methanosarcinales were unrelated to any cultured genus. Overall, the clone libraries indicate a diversified methanogen community that uses H2/CO2, formate, acetate, and methylated substrates. Phylogenetic affiliations of mcrA and 16S rRNA clones with thermophilic and nonthermophilic cultured isolates indicate a mixed mesophilic and thermophilic methanogen community in the surficial Guaymas sediments.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 138
Author(s):  
Stuart Donachie ◽  
Claire Fraser ◽  
Ethan Hill ◽  
Marguerite Butler

The term “microbiome” is currently applied predominantly to assemblages of organisms with 16S rRNA genes. In this context, “microbiome” is a misnomer that has been conferred a wide-ranging primacy over terms for community members lacking such genes, e.g., mycobiome, eukaryome, and virome, yet these are also important subsets of microbial communities. Widespread convenient and affordable 16S rRNA sequencing pipelines have accelerated continued use of such a “microbiome”, but at what intellectual and practical costs? Here we show that the use of “microbiome” in ribosomal gene-based studies has been egregiously misapplied, and discuss potential impacts. We argue that the current focus of “microbiome” research, predominantly on only ‘bacteria’, presents a dangerous narrowing of scope which encourages dismissal and even ignorance of other organisms’ contributions to microbial diversity, sensu stricto, and as etiologic agents; we put this in context by discussing cases in both marine microbial diversity and the role of pathogens in global amphibian decline. Fortunately, the solution is simple. We must use descriptive nouns that strictly reflect the outcomes attainable by the methods used. “Microbiome”, as a descriptive noun, should only be used when diversity in the three recognized domains is explored.


Sign in / Sign up

Export Citation Format

Share Document