Improvement of the Impact-Echo Method for the Higher Reliability in the Structural Integrity Assessment

Author(s):  
Mi Ra Cho ◽  
Ki Bong Kim ◽  
Sung Ho Joh ◽  
Tae Ho Kang
2006 ◽  
Vol 321-323 ◽  
pp. 336-339 ◽  
Author(s):  
Mi Ra Cho ◽  
Ki Bong Kim ◽  
Sung Ho Joh ◽  
Tae Ho Kang

The impact-echo method, which is to evaluate the integrity of concrete and masonry structures nondestructively, is an excellent method in practical applications, and provides a high quality of structural integrity assessment. However, in the case of multi-layered systems in which each layer has different stiffness, the impact-echo method may lack reliability in thickness evaluation, which demands improvement of the impact-echo method. This study was first dedicated to the understanding of stress-wave propagation in the impact-echo test, and secondly, the reliability of the impact-echo method was investigated through the numerical simulation of the impact-echo test. The investigation included the research on influencing factors such as stiffness contrast between layers and receiver location. Finally, the research in this paper led to the development of the phase-difference response (PDR) method, based on the frequency response between two receivers deployed in a line with an impact source.


2006 ◽  
Vol 321-323 ◽  
pp. 298-301
Author(s):  
Sung Ho Joh ◽  
Tae Ho Kang ◽  
Soo Ahn Kwon

Concrete runways are subject to material deterioration or structural problems, which lead to surface cracks and scaling of a concrete pavement. In this study, seismic techniques including the SASW method, the impact-echo method and the impulse-response method were integrated into a systematic nondestructive approach, which is designed for the assessment of structural integrity of concrete runway pavements. Numerical simulation of the employed seismic methods was performed to verify the validity. For feasibility, the integrated approach was applied to a concrete runway which has surface cracks at pavement segments not subject to airplane loading. The approach verified that the surface cracks were attributed to reduced subgrade stiffness, which may not be detected by conventional pavement tests. The validity of the integrated approach was also proven in lieu of forensic engineering for concrete runway pavements.


2014 ◽  
Vol 1000 ◽  
pp. 285-288 ◽  
Author(s):  
Michal Matysík ◽  
Iveta Plšková ◽  
Zdeněk Chobola

The aim of this paper is to evaluate the possibility of using the Impact-echo method for assessment of extremely long period of frost resistance of ceramic tiles. Sets of ceramic tiles of the Ia class to EN 14 411 B standard made by manufacture RACOs have been analyzed. The ceramic tiles under investigation have been subjected to 500 freeze-thaw-cycle based degradation in compliance with the relevant EN ISO 10545-12 standard. To verify the correctness of the Impact-echo method results, additional physical properties of the ceramic tiles under test have been measured. To analyze the specimen surface condition, we also used Olympus LEXT 3100 confocal scanning microscope. It has been proved that the acoustic method Impact-echo is a sensitive indicator of the structure condition and can be applied to the ceramic cladding element frost resistance and service life prediction assessment.


2016 ◽  
Vol 50 (6) ◽  
pp. 879-884
Author(s):  
Daniela Štefková ◽  
Kristýna Timčaková ◽  
Libor Topolá ◽  
Petr Cikrle

2021 ◽  
Author(s):  
P. V. Suryanarayana ◽  
Miodrag Bogdanovic ◽  
Kuhanesapathy Thavaras Pathy ◽  
M. Razali Paimin

Abstract Shallow gas hydrate zones are present in some deepwater fields. During production, the shallow hydrates may dissociate due to heat-up of the near wellbore formation, which can extend radially to several meters from the wellbore. This can compromise structural integrity of the well (particularly structural strings), cause subsidence, and impact subsea equipment installations. This problem is well known, and has been addressed in the literature. An enthalpy-based transient thermal simulation is required to determine the dissociation front. Further, post-dissociation formation mechanics and well integrity assessment are complex, requiring numerical approaches such as Finite Element Analyses. In this paper, we present an approach that allows a preliminary assessment of the severity of the impact of dissociation on well integrity, so that a more complex assessment may be undertaken only for severe situations. The main objectives of the preliminary assessment are: to model hydrate dissociation front and the radial extent of dissociation as a function of depth; evaluate response of formation to this dissociation; analyze mechanical response of the well to the modified mechanical properties within dissociated zone; and confirm well integrity. The paper describes the approach, and introduces two thermal metrics to assess the likely severity of the integrity impact of hydrate dissociation. Using these metrics, the need for a more detailed analysis can be determined. Further, load analysis and integrity checks of the structural strings and the wellhead that can be performed as part of the preliminary assessment are discussed. An illustrative example is used to demonstrate the approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Fei Yao ◽  
Guangyu Chen ◽  
Jianhong Su

To identify shield grouting quality based on impact echo method, an impact echo test of segment-grouting (SG) test piece was carried out to explore effect of acoustic impedance of grouting layers and grouting defects on impact echo law. A finite element numerical simulation on the impact echo process was implemented. Test results and simulation results were compared. Results demonstrated that, under some working conditions, finite element simulation results and test results both agree with theoretical values. The acoustic impedance ratio of SG material influenced the echo characteristics significantly. But thickness frequency could not be detected under some working conditions because the reflected energy is weak. Frequency feature under grouting defects was more complicated than that under no grouting defects.


2013 ◽  
Vol 639-640 ◽  
pp. 1046-1050 ◽  
Author(s):  
Yun Feng Xiao ◽  
Da Hai Zhang ◽  
Li Liu

The ultrasonic method and the impact-echo method are two kinds of nondestructive test method (NDT), which are widely used, not only for concrete component, but for masonry structures. However, it is hard to detect the flaw in the concrete composite component if only with one kind of detection method. In this study, the principle of ultrasonic method and impact-echo method are outlined. And an attempt of a new method is taken, that Ultrasonic method together with Impact-echo method is used in detecting the deflection in Concrete Composite Component. It is proved that the result of this new method is more accurate and stable than that of only using ultrasonic method or impact-echo method. Introduction Introduction


Sign in / Sign up

Export Citation Format

Share Document