The Effects of Energy Director Shape on Temperature Field during Ultrasonic Welding of Thermoplastic Composites

Author(s):  
Jiu Chun Yan ◽  
Xiao Lin Wang ◽  
Rui Qi Li ◽  
Hui Bin Xu ◽  
Shi Qin Yang
2007 ◽  
Vol 353-358 ◽  
pp. 2007-2010 ◽  
Author(s):  
Jiu Chun Yan ◽  
Xiao Lin Wang ◽  
Rui Qi Li ◽  
Hui Bin Xu ◽  
Shi Qin Yang

The ultrasonic welding process of thermoplastic composite with different shapes of energy director (ED) was simulated using finite element model. The results show that the highest temperature zone locates at the tip for the semicircular and triangular ones, and locates at the middle height for the trapezoid one. But it does not locate at the body of ED for the rectangular one. Energy director with different shapes lead to the temperature rising rate at different order of amplitude. The welding amplitude has same influence on the four shapes of ED. The temperature distributing profiles of semicircular, triangular and trapezoid ED keep constant from the initial welding time to that when the highest temperature on joints arrives the temperature of glass transformation (Tg), but the profile for rectangular ED changes greatly.


2019 ◽  
Vol 54 (15) ◽  
pp. 2023-2035 ◽  
Author(s):  
Bram Jongbloed ◽  
Julie Teuwen ◽  
Genevieve Palardy ◽  
Irene Fernandez Villegas ◽  
Rinze Benedictus

Continuous ultrasonic welding is a high-speed joining method for thermoplastic composites. Currently, a thin film energy director is used to focus the heat generation at the interface. However, areas of intact energy director remain in the welded seam, which significantly lowers the weld strength, and result in a non-uniformly welded seam. To improve the weld uniformity of continuous ultrasonically welded joints, we changed to a more compliant energy director. A woven polymer mesh energy director was found to give a significant improvement in weld quality. The mesh was flattened in between the composite adherends during the welding process. This flattening promoted a good contact between the energy director and the adherends, fully wetting the adherend surfaces, resulting in a more uniformly welded seam without areas of intact energy director.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6620
Author(s):  
Bram C. P. Jongbloed ◽  
Julie J. E. Teuwen ◽  
Rinze Benedictus ◽  
Irene Fernandez Villegas

Continuous ultrasonic welding is a promising technique for joining thermoplastic composites structures together. The aim of this study was to gain further insight into what causes higher through-the-thickness heating in continuous ultrasonic welding of thermoplastic composites as compared to the static process. Thermocouples were used to measure temperature evolutions at the welding interface and within the adherends. To understand the mechanisms causing the observed temperature behaviours, the results were compared to temperature measurements from an equivalent static welding process and to the predictions from a simplified heat transfer model. Despite the significantly higher temperatures measured at the welding interface for the continuous process, viscoelastic bulk heat generation and not thermal conduction from the interface was identified as the main cause of higher through-the-thickness heating in the top adherend. Interestingly the top adherend seemed to absorb most of the vibrational energy in the continuous process as opposed to a more balanced energy share between the top and bottom adherend in the static process. Finally, the higher temperatures at the welding interface in continuous ultrasonic welding were attributed to pre-heating of the energy director due to the vibrations being transmitted downstream of the sonotrode, to reduced squeeze-flow of energy director due to the larger adherend size, and to heat flux originating downstream as the welding process continues.


2021 ◽  
pp. 002199832097681
Author(s):  
F Köhler ◽  
IF Villegas ◽  
C Dransfeld ◽  
A Herrmann

Ultrasonic welding is a promising technology to join fibre-reinforced thermoplastic composites. While current studies are mostly limited to fabric materials the applicability to unidirectional materials, as found in aerospace structures, would offer opportunities for joining primary aircraft structures. However, due to the highly anisotropic flow of a molten unidirectional ply undesired squeeze flow phenomena can occur at the edges of the weld overlap. This paper investigates how the fibre orientation in the plies adjacent to the weld line influences the welding process and the appearance of edge defects. Ultrasonic welding experiments with different layups and energy director configurations were carried out while monitoring temperatures at different locations inside and outside the weld overlap. The joints were characterized by single lap shear tests, analysis of corresponding fracture surfaces and microscopic cross-sections. Results showed that the anisotropic flow and the anisotropic thermal conductivity of the plies adjacent to the weld line have a distinct effect on the appearance and location of edge defects. By using energy directors that cover only part of the weld overlap area a new approach was developed to mitigate edge defects caused by the highly directional properties of the unidirectional plies.


2020 ◽  
Vol 46 (4) ◽  
pp. 130-136
Author(s):  
Kodai WAKAYAMA ◽  
Kotaro UEHARA ◽  
Jun KOYANAGI ◽  
Shinichi TAKEDA

2020 ◽  
Vol 54 (22) ◽  
pp. 3081-3098 ◽  
Author(s):  
Eirini Tsiangou ◽  
Sofia Teixeira de Freitas ◽  
Irene Fernandez Villegas ◽  
Rinze Benedictus

Ultrasonic welding is a highly promising technique for joining thermoplastic to thermoset composites. A neat thermoplastic coupling layer is co-cured on the surface to be welded to make the thermoset composite ‘weldable’. A reliable bond is attained when miscible thermoplastic and thermoset materials are chosen. For welding carbon fibre/polyetheretherketone (PEEK) to thermoset composite samples, a PEEK film is not preferable due to its immiscibility with epoxy resins. On the other hand, polyetherimide is an excellent candidate, since it is known to be miscible to most epoxy systems at high temperatures and PEEK polymers. This study focusses on two main subjects; firstly, the nature of the material of the energy director, i.e. a flat thermoplastic film used to promote heat generation at the interface. In this case, the energy director can be either polyetherimide, as in the coupling layer or PEEK material, as in the matrix of the thermoplastic composite adherend. It was found that both materials can produce welds with similar mechanical performance. This study focusses secondly on the thickness of the coupling layer. Due to the high melting temperature of the PEEK matrix, a 60-µm-thick coupling layer was seemingly too thin to act as a thermal barrier for the epoxy resin for heating times long enough to produce fully welded joints. Such an issue was found to be overcome by increasing the thickness of the coupling layer to 250 µm, which resulted in high-strength welds.


Sign in / Sign up

Export Citation Format

Share Document