Effect of Tool Material and Offset on Friction Stir Welding of Al Alloy to Carbon Steel

2012 ◽  
Vol 445 ◽  
pp. 747-752
Author(s):  
Namdar Karimi ◽  
S. Nourouzi ◽  
M. Shakeri ◽  
M. Habibnia ◽  
A. Dehghani
2012 ◽  
Vol 445 ◽  
pp. 747-752 ◽  
Author(s):  
Namdar Karimi ◽  
S. Nourouzi ◽  
M. Shakeri ◽  
M. Habibnia ◽  
A. Dehghani

In this research, effect of tool material and tool offset on tool erosion and metallurgical and mechanical properties of dissimilar friction stir welding of Al alloy to carbon steel are investigated. As the tool erosion is one of the important parameters on the defect-free friction stir welding, especially in butt joint of Al alloy to steel. In present work, different tool material and offset are used in friction stir welding at Al alloy to carbon steel with a constant tool speed and feed rate named as 710 rpm and 28 mm/min respectively. The result of experimental observation is shown better performance by tungsten carbide (WC) tool material with 1 mm offset on Al alloy area.


2012 ◽  
Vol 445 ◽  
pp. 741-746 ◽  
Author(s):  
M. Habibnia ◽  
M. Shakeri ◽  
S. Nourouzi ◽  
Namdar Karimi

To achieve a defect-free butt joint of dissimilar metals by friction stir welding procedure, there are some major parameters, such as tool material and geometry, tool rotational speed, feed rate and tilt angel. This research is focused on dissimilar metals welding, namely 1100 Al alloy and 1045 carbon steel. In this paper, the effect of tool rotation speed and feed rate are experimentally investigated on surface appearance, microstructure and micro hardness of the friction stir welded plates. Optimum values of tool rotation speed and feed rate have been achieved experimentally by the quality of the butt joint.


2012 ◽  
Vol 152-154 ◽  
pp. 418-423
Author(s):  
Namdar Karimi ◽  
M. Shakeri ◽  
M. Habibnia ◽  
S. Nourouzi

Joining of dissimilar materials like Al alloy to carbon steel is attractive for industrial applications such as automotive industry. In this research, Friction Stir Welding (FSW) has been used to joint between dissimilar materials like 1100 Al alloys to AISI 1045 carbon steel. In this paper, the effect of rotational speed, feedrate and offset of tool are investigated on mechanical and metallurgical properties of the welding. The joints were evaluated by mechanical testing and metallurgical analysis. Metallurgical properties carried out by optical microscopy and Scanning Electron Microscopy (SEM) and mechanical properties conducted by the joint strength. Finally, optimum value of tool rotational speed and feedrate were obtained 710 rpm and 28 mm/min respectively and the best offset value of the tool obtained 1.5 mm in the Al alloy. Tensile strength properties of Al1100/1045 carbon steel joints were found to be approximately 20% lower than that of the Al 1100-H14 alloy base metal


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


2021 ◽  
pp. 186-186
Author(s):  
Darko Veljic ◽  
Marko Rakin ◽  
Aleksandar Sedmak ◽  
Nenad Radovic ◽  
Bojan Medjo ◽  
...  

The influence of friction stir welding (FSW) parameters on thermo-mechanical behaviour of the material during welding is analysed. An aluminium alloy is considered (Al 2024 T351), and different rotating speed and welding speed are applied. Finite element model consists of the plate (Al alloy), backing plate and welding tool, and it is formed and solved in software package Simulia Abaqus. The influence of the welding conditions on material behaviour is taken into account by application of the Johnson-Cook material model. The rotation of the tool affects the results: if increased, it contributes to an increase of friction-generated heat intensity. The other component of the generated heat, the plastic deformation of the material, is negligibly changed. When the welding speed is increased, the intensity of friction-generated heat decreases, while the heat generation due to plastic deforming increases. Combined, these two effects cause small change of the total heat generation. For the same welded joint length, the plate welded by lower speed will be heated more intensively. The changes of the heat generation influence both the temperature field and reaction force, which are also considered.


Author(s):  
Neetesh Soni ◽  
Ambrish Singh

The aim of this work is to assess the influence of Friction Stir Welding (FSW), process parameters, optimized tool traveling speed, and corrosion resistance of the 0.95 Mg-Al-alloy and pure copper weldment. Samples of aluminum-copper with and without deformation were characterized to investigate the metallurgical effects created during the welding deformation process. Effect of process parameters on microstructure and corrosion rate have been investigated for all the samples. All the electrochemical and polarization tests were done in 3.5 wt.% NaCl solution. Scanning Kelvin Probe (SKP) was done to detect the localized corrosion on the surface. Optical micrography observation indicated that the primary α-Al phase, which was formed during solidification can effectively limit the growth of Cu9Al4 phase. Finer acicular α-Al precipitates were observed in CuAl matrix during joining process that tends to coarser with the increase in tools travel speed. The electrochemical and polarization results showed that among all the tool travelling speed the specimen joined at tool travelling speed of 40 mm/min shows the best non-corrosive property.


2021 ◽  
Vol 63 (9) ◽  
pp. 829-835
Author(s):  
Sare Çelik ◽  
Fatmagül Tolun

Abstract AA5754Al alloy is widely used in industry. However, as in the case of all Al alloys, the 5xxx series Al alloys cannot be easily joined through fusion welding techniques. To address this problem, in this study, the effect of double-sided friction stir welding at various tool rotational speeds (450, 710, and 900 rpm), feeding rates (40, 50, and 80 mm × min-1), and tool tilt angles (0°, 1°, 2°) on the welding parameters and mechanical and microstructural characteristics of AA5754 Al alloy was determined. Tensile strength tests and microhardness tests were performed to examine the mechanical properties of the welded specimens. The microstructures of the welded zone were examined by obtaining optical microscopy and scanning electron microscopy images. The tensile test results indicated that the specimens exhibited the highest welding performance of 95.17 % at a tool rotational speed, feed rate, and tool tilt angle of 450 rpm, 50 mm × min-1 and 1°, respectively.


Sign in / Sign up

Export Citation Format

Share Document