scholarly journals Thermo-mechanical analysis of linear welding stage in friction stir welding - influence of welding parameters

2021 ◽  
pp. 186-186
Author(s):  
Darko Veljic ◽  
Marko Rakin ◽  
Aleksandar Sedmak ◽  
Nenad Radovic ◽  
Bojan Medjo ◽  
...  

The influence of friction stir welding (FSW) parameters on thermo-mechanical behaviour of the material during welding is analysed. An aluminium alloy is considered (Al 2024 T351), and different rotating speed and welding speed are applied. Finite element model consists of the plate (Al alloy), backing plate and welding tool, and it is formed and solved in software package Simulia Abaqus. The influence of the welding conditions on material behaviour is taken into account by application of the Johnson-Cook material model. The rotation of the tool affects the results: if increased, it contributes to an increase of friction-generated heat intensity. The other component of the generated heat, the plastic deformation of the material, is negligibly changed. When the welding speed is increased, the intensity of friction-generated heat decreases, while the heat generation due to plastic deforming increases. Combined, these two effects cause small change of the total heat generation. For the same welded joint length, the plate welded by lower speed will be heated more intensively. The changes of the heat generation influence both the temperature field and reaction force, which are also considered.

2013 ◽  
Vol 17 (2) ◽  
pp. 489-496 ◽  
Author(s):  
Darko Veljic ◽  
Marko Rakin ◽  
Milenko Perovic ◽  
Bojan Medjo ◽  
Zoran Radakovic ◽  
...  

This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW). A three-dimensional finite element model (FEM) is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb?s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.


2014 ◽  
Vol 903 ◽  
pp. 200-205
Author(s):  
Irfan Hilmy ◽  
Erry Yulian Triblas Adesta ◽  
Muhammad Riza

Friction Stir Welding (FSW) is getting its popularity because it is considered as an environmentally friendly manufacturing. Homemade FSW tool to be attached to a conventional milling machine was designed and fabricated. Experimental investigation of FSW process of the Aluminum alloy work piece to observe its heat generation was performed. Since heat generation is the main objective in a FSW process, the importance of identification of heat generation performance in a welded specimen is paramount. Heat generation of a welded specimen during FSW was measured using infra red thermal camera. The limitation of the measurement is it only captured the heat generation at surrounding area and surface of the welded specimen. Therefore, the heat generation inside contact area could not be identified. To overcome this problem, a finite-element model of the FSW process was developed. A model consists of a solid model of half the welded specimen since the symmetrical behavior of the geometry and boundary condition was assumed. Heat transfer analysis of a solid body model of a work piece was computed. It was observed that FSW parameters which involved dominantly in the heat generation were spindle speed, feeding rate and normal force. The heat generation model of FSW process was validated with the one from the experimental investigation. Good agreement between the numerical and the experimental investigation result has been made.


2021 ◽  
Vol 63 (9) ◽  
pp. 829-835
Author(s):  
Sare Çelik ◽  
Fatmagül Tolun

Abstract AA5754Al alloy is widely used in industry. However, as in the case of all Al alloys, the 5xxx series Al alloys cannot be easily joined through fusion welding techniques. To address this problem, in this study, the effect of double-sided friction stir welding at various tool rotational speeds (450, 710, and 900 rpm), feeding rates (40, 50, and 80 mm × min-1), and tool tilt angles (0°, 1°, 2°) on the welding parameters and mechanical and microstructural characteristics of AA5754 Al alloy was determined. Tensile strength tests and microhardness tests were performed to examine the mechanical properties of the welded specimens. The microstructures of the welded zone were examined by obtaining optical microscopy and scanning electron microscopy images. The tensile test results indicated that the specimens exhibited the highest welding performance of 95.17 % at a tool rotational speed, feed rate, and tool tilt angle of 450 rpm, 50 mm × min-1 and 1°, respectively.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1024 ◽  
Author(s):  
Robert Kosturek ◽  
Lucjan Śnieżek ◽  
Janusz Torzewski ◽  
Marcin Wachowski

The aim of this research was to investigate the effect of friction stir welding (FSW) parameters on microstructure and mechanical properties of Sc-modified AA2519 extrusion joints. The workpiece was welded by FSW in non-heat-treated condition with seven different sets of welding parameters. For each obtained joint macrostructure and microstructure observations were performed. Mechanical properties of joints were investigated using tensile test together with localization of fracture location. Joint efficiencies were established by comparing measured joints tensile strength to the value for base material. The obtained results show that investigated FSW joints of Sc-modified AA2519 in the non-heat-treated condition have joint efficiency within the range 87–95%. In the joints obtained with the lowest ratio of the tool rotation speed to the tool traverse speed, the occurrence of imperfections (voids) localized in the stir zone was reported. Three selected samples were subjected to further investigations consisting microhardness distribution and scanning electron microscopy fractography analysis. As the result of dynamic recrystallization, the microhardness of the base material value of 86 HV0.1 increased to about 110–125 HV0.1 in the stir zone depending on the used welding parameters. Due to lack of the strengthening phase and low strain hardening of used alloy the lack of a significantly softened zone was reported by both microhardness analysis and investigation of the fractured samples.


2011 ◽  
Vol 295-297 ◽  
pp. 1929-1932
Author(s):  
Yi Min Tu ◽  
Ran Feng Qiu ◽  
Hong Xin Shi ◽  
Xin Zhang ◽  
Ke Ke Zhang

In order to obtain better understanding of the friction stir weldability of the magnesium alloy and provide some foundational information for improving mechanical properties of retardant magnesium alloy joints. A retardant magnesium alloy was weld using the method of friction stir welding. The influence of welding parameters on the strength of the joint was investigated. The maximum strength of 230 MPa was obtained from the joint welded at the tool rotational speed of 1000 r/min and welding speed of 750 mm/min.


2014 ◽  
Vol 783-786 ◽  
pp. 1794-1807
Author(s):  
Qing Yu Shi ◽  
Gao Qiang Chen ◽  
Xi Bo Wang ◽  
Xu Kang

Friction stir welding (FSW) is an advanced solid state joining technology, which was invented by TWI in 1991. During the process, large amount of heat is generated due to the friction between the tool and the material. As a result, the metal around the tool is softened as the temperature rises, and significant plastic flow occurs. So FSW is a complex process with multi-field coupled phenomena. Material flow plays a central role in FSW. But it is still difficult to reveal the material flow regime and joining mechanism during FSW process. Numerical simulation is a powerful tool for investigating the metal-flow-related complex phenomena during FSW. Meanwhile, numerical simulation could also help to optimize FSW tool design and FSW parameters. In this paper, we review the recent development in simulation of material flow during FSW. Then, the important issues in modeling multi field coupled phenomena during FSW are summarized, which include the heat generation mechanism, the temperature and strain rate dependent material’s behavior, and the interaction between tool and material. Finally, a comprehensive simulation model is presented, which enables advanced study on the coupled phenomena of heat generation, temperature distribution, material flow, and defects formation. This model has shown potential applications in simulating the relation between the transport of material and the macrostructure formation or defects formation. In spite of these progresses, simulation of material flow during FSW still need quite a lot of researches to fulfill industry requirement.


2020 ◽  
Vol 11 (6) ◽  
pp. 769-782 ◽  
Author(s):  
Nagabhushan Kumar Kadigithala ◽  
Vanitha C

PurposeThe main purpose of the present work is to evaluate, the microstructural and mechanical properties of friction stir welded plates of AZ91D magnesium alloy with 3 mm thickness, and to determine the optimum range of welding conditions.Design/methodology/approachMicrostructure and fractographic studies were carried out using scanning electron microscopy (SEM). Vickers micro hardness test was performed to evaluate the hardness profile in the region of the weld area. The phases in the material were confirmed by X-Ray diffraction (XRD) analysis. Transverse tensile tests were conducted using universal testing machine (UTM) to examine the joint strength of the weldments at different parameters.FindingsMetallographic studies revealed that each zone shown different lineaments depending on the mechanical and thermal conditions. Significant improvement in the hardness was observed between the base material and weldments. Transverse tensile test results of weldments had shown almost similar strength that of base material regardless of welding speed. Fractographic examination indicated that the welded specimens failed due to brittle mode fracture. Through these studies it was confirmed that friction stir welding (FSW) can be used for the welding of AZ91D magnesium alloy.Research limitations/implicationsIn the present study, the welding speed varied from 25 mm/min to 75 mm/min, tilt angle varied from 1.5° to 2.5° and constant rotational speed of 500 rpm.Practical implicationsMagnesium and aluminum based alloys which are having high strength and low density, used in automotive and aerospace applications can be successfully joined using FSW technique. The fusion welding defects can be eliminated by adopting this technique.Originality/valueLimited work had been carried out on the FSW of magnesium based alloys over aluminum based alloys. Furthermore, this paper analyses the influence of welding parameters over the microstructural and mechanical properties.


Author(s):  
Anganan K ◽  
Narendran RJ ◽  
Naveen Prabhu N ◽  
Rahul Varma R ◽  
Sivasubramaniyam R

Friction stir welding (FSW) is an innovative solid state joining technique and has been employed in industries for joining aluminum, magnesium, zinc and copper alloys. The FSW process parameters such as tool, rotational speed, welding speed, axial force, etc play major role in deciding the weld quality. A mathematical modeling was developed based on experiments to predict the tensile strength of dissimilar FSW aluminum alloys. The maximum tensile strength of 210 MPa can be obtained at the tool rotational speed of 1100 rpm, welding speed of 35mm/min and an axial load of 7 kN is the Optimum welding parameters.


Author(s):  
Ashish Bist ◽  
JS Saini ◽  
Vikas Sharma

Aluminum matrix composites have received considerable attention due to their high specific strength and specific stiffness, high hardness, and wear resistance along with being light in weight. These composites are preferably joined using friction stir welding process. The major concern in friction stir welding is the wear of the welding tool pin which is the backbone of the process. The wear is due to the prolonged contact between the tool and the harder reinforcements in the composite materials. The present work deals with the study of tool wear and its surface roughness with respect to different selected friction stir welding parameters such as rotational speed, transverse speed, length of weld, and different composition of Aluminum composite. It was found that the total amount of material removed from the tool and the surface roughness of the tool is in direct proportion to the rotational speed of the tool and the length of the weld but inversely proportional to the transverse rate. The increase in wt.% of SiC reinforcement leads to the higher tool wear but reduces the surface roughness of the tool.


Sign in / Sign up

Export Citation Format

Share Document