scholarly journals The Research on Single-Disc Rotor Nonlinear Vibration Model and Mechanism

2011 ◽  
Vol 2-3 ◽  
pp. 954-959 ◽  
Author(s):  
Min Wu ◽  
Jin Fu Yang

Based on mechanical properties of rotor nonlinear vibration and the assumption of large deformation, the rotor nonlinear vibration model in the form of Duffing equation is constructed from typical engineering problems. According to analytical solutions of Duffing equation, system’s equivalent frequency and frequency response equation are derived. Furthermore, the influences of stiffness, damping and nonlinear components are studied. The single-disc rotor nonlinear vibration experimental results verify the rationality and efficiency of nonlinear vibration model’s construction and Duffing equation’s analytical solution and frequency response equation. The mechanisms of resonance, amplitude jump and hysteresis are also revealed. It provides a new research method for rotor vibration characteristics analysis.

2011 ◽  
Vol 282-283 ◽  
pp. 633-636
Author(s):  
Qin Man Fan ◽  
Yong Hai Wu

In allusion to a truck transmission gears, a nonlinear vibration model of transmission gears was constructed based on the theory of gear system dynamics and nonlinear dynamics. Basing on the computing platform Matlab and using the Runge-Kutta method to calculate the time history response of gear vibration when the gap exists, and the case of non-resonant and load gear backlash vibration frequency of gear changes were studied. The results of this paper have an important significance to improve the movement of transmission gears to pass accuracy, reduce noise, reduce failures and increase gear life.


Author(s):  
Canchang Liu ◽  
Ruirui Jiang ◽  
Lei Li ◽  
Yingchao Zhou

A vibration control signal sensing method is proposed utilizing the grid electrode displacement sensitive effect of field-effect transistors. The signal sensing method is applied to nonlinear resonance delay control of a nanobeam that is used as the core component of nano–microdevices. The nonlinear vibration dynamical model of the nanobeam based on the field-effect tube sensing is established and the differential equation of motion with time delay control is presented. The amplitude frequency response equation and phase frequency response equation of the nanobeam are obtained by analyzing the first-order approximate solution of the primary and superharmonic vibration of the nonlinear equation with multi-scale method. The vibration feedback gain and time delay can affect the vibration amplitude and nonlinear behavior of the nanobeam. The nonlinear vibration of the nanobeam can be adjusted and effectively controlled by selecting appropriate feedback gains and time delays.


2019 ◽  
Vol 26 (9-10) ◽  
pp. 680-700 ◽  
Author(s):  
Sayyid H Hashemi Kachapi ◽  
Hamidreza Mohammadi Daniali ◽  
Morteza Dardel ◽  
Alireza Fathi

In this work, nonlinear vibration and frequency response analysis of a double-walled piezoelectric nanoresonator based on a cylindrical nanoshell is performed using the Gurtin–Murdoch surface/interface theory. The piezoelectric nanoresonator is simultaneously subjected to the visco-Pasternak medium and nonlinear van der Waals and electrostatic forces. It is found that the electrostatic and piezoelectric voltages, length to radius ratio, nanoresonator gap width, linear and nonlinear van der Waals coefficients and other parameters can effectively change the flexural rigidity of the system, which in turn affects the nonlinear frequency response. Also, increasing or decreasing of some parameters leads to increase or decrease in the resonance amplitude, resonant frequency, instability of the system, nonlinear behavior and bandwidth.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Jihai Yuan ◽  
Xiangmin Zhang ◽  
Changping Chen

Since microplates are extensively used in MEMS devices such as microbumps, micromirrors, and microphones, this work aims to study nonlinear vibration of an electrically actuated microplate whose four edges are clamped. Based on the modified couple stress theory (MCST) and strain equivalent assumption, size effect and damage are taken into consideration in the present model. The dynamic governing partial differential equations of the microplate system were obtained using Hamilton’s principle and solved using the harmonic balance method after they are transformed into ordinary differential equation with regard to time. Size effect and damage effect on nonlinear free vibration of the microplate under DC voltage are discussed using frequency-response curve. In the forced vibration analysis, the frequency-response curves were also employed for the purpose of highlighting the influence of different physical parameters such as external excitation, damping coefficient, material length scale parameter, and damage variable when the system is under AC voltage. The results presented in this study may be helpful and useful for the dynamic stability of a electrically actuated microplate system.


2004 ◽  
Vol 11 (5-6) ◽  
pp. 685-692 ◽  
Author(s):  
Jiehua Peng ◽  
Jiashi Tang ◽  
Zili Chen

A new method of identifying parameters of nonlinearly vibrating system in frequency domain is presented in this paper. The problems of parameter identification of the nonlinear dynamic system with nonlinear elastic force or nonlinear damping force are discussed. In the method, the mathematic model of parameter identification is frequency response function. Firstly, by means of perturbation method the frequency response function of weakly nonlinear vibration system is derived. Next, a parameter transformation is made and the frequency response function becomes a linear function of the new parameters. Then, based on this function and with the least square method, physical parameters of the system are identified. Finally, the applicability of the proposed technique is confirmed by numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document