Condensate Migration Dynamics into Porous Bed in a Nonperforated Chamber

2011 ◽  
Vol 110-116 ◽  
pp. 3156-3164
Author(s):  
Eko Siswanto ◽  
Hiroshi Katsurayama ◽  
Yasuo Katoh

Due to complexity of condensate-migration into a porous-bed, the analytically simplified studies using uniform-flow assumption need enhancement through performing experiments. This study is conducted by maintaining saturated vapor-air over porous-alumina-balls and glass-beads-bed in a nonperforated chamber. Walls of the chamber are controlled isothermally. By evaluating on subcooling-, diffusive-, and porous perturbation-parameter, it is known that condensate migrates in Darcian regime. In this regime, based on visualized evidence and proposed Lyapunov-exponent-base series, this migration study finds that there are periodic- and unperiodic-dominant subregimes, where a temporal chaotic-migration case is found in the unperiodic-dominant subregime.

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Zhenmin Cheng ◽  
Gang Luo ◽  
Yanling Tang ◽  
Dan Ling ◽  
Zhaoxuan Chen ◽  
...  

Films and rivulets are the two basic forms of dynamic liquid in a three-phase fixed bed (trickle bed), which determines the wetting efficiency of the catalyst. This paper is devoted to the conflicting wetting performance observed between non-porous glass beads and porous alumina pellets, and a parallel zone model is applied to resolve the complex liquid flow texture. This shows that in the case of glass beads, the wetting efficiencies of the catalyst along with the liquid flow rate in increasing and decreasing branches are different, especially when the gas flow rate is low. In comparison, there is almost no wetting difference for the alumina pellets with respect to liquid flow rate increasing or decreasing. The dynamic liquid is significantly more uniformly distributed over the cross-section in the Al2O3 bed than in the glass one.


2019 ◽  
Vol 875 ◽  
pp. 1058-1095 ◽  
Author(s):  
A. N. Edwards ◽  
A. S. Russell ◽  
C. G. Johnson ◽  
J. M. N. T. Gray

Shallow granular avalanches on slopes close to repose exhibit hysteretic behaviour. For instance, when a steady-uniform granular flow is brought to rest it leaves a deposit of thickness $h_{stop}(\unicode[STIX]{x1D701})$ on a rough slope inclined at an angle $\unicode[STIX]{x1D701}$ to the horizontal. However, this layer will not spontaneously start to flow again until it is inclined to a higher angle $\unicode[STIX]{x1D701}_{start}$, or the thickness is increased to $h_{start}(\unicode[STIX]{x1D701})>h_{stop}(\unicode[STIX]{x1D701})$. This simple phenomenology leads to a rich variety of flows with co-existing regions of solid-like and fluid-like granular behaviour that evolve in space and time. In particular, frictional hysteresis is directly responsible for the spontaneous formation of self-channelized flows with static levees, retrogressive failures as well as erosion–deposition waves that travel through the material. This paper is motivated by the experimental observation that a travelling-wave develops, when a steady uniform flow of carborundum particles on a bed of larger glass beads, runs out to leave a deposit that is approximately equal to $h_{stop}$. Numerical simulations using the friction law originally proposed by Edwards et al. (J. Fluid Mech., vol. 823, 2017, pp. 278–315) and modified here, demonstrate that there are in fact two travelling waves. One that marks the trailing edge of the steady-uniform flow and another that rapidly deposits the particles, directly connecting the point of minimum dynamic friction (at thickness $h_{\ast }$) with the deposited layer. The first wave moves slightly faster than the second wave, and so there is a slowly expanding region between them in which the flow thins and the particles slow down. An exact inviscid solution for the second travelling wave is derived and it is shown that for a steady-uniform flow of thickness $h_{\ast }$ it produces a deposit close to $h_{stop}$ for all inclination angles. Numerical simulations show that the two-wave structure deposits layers that are approximately equal to $h_{stop}$ for all initial thicknesses. This insensitivity to the initial conditions implies that $h_{stop}$ is a universal quantity, at least for carborundum particles on a bed of larger glass beads. Numerical simulations are therefore able to capture the complete experimental staircase procedure, which is commonly used to determine the $h_{stop}$ and $h_{start}$ curves by progressively increasing the inclination of the chute. In general, however, the deposit thickness may depend on the depth of the flowing layer that generated it, so the most robust way to determine $h_{stop}$ is to measure the deposit thickness from a flow that was moving at the minimum steady-uniform velocity. Finally, some of the pathologies in earlier non-monotonic friction laws are discussed and it is explicitly shown that with these models either steadily travelling deposition waves do not form or they do not leave the correct deposit depth $h_{stop}$.


Author(s):  
M. Yamada ◽  
K. Ueda ◽  
K. Kuboki ◽  
H. Matsushima ◽  
S. Joens

Use of variable Pressure SEMs is spreading among electron microscopists The variable Pressure SEM does not necessarily require specimen Preparation such as fixation, dehydration, coating, etc which have been required for conventional scanning electron microscopy. The variable Pressure SEM allows operating Pressure of 1˜270 Pa in specimen chamber It does not allow microscopy of water-containing specimens under a saturated vapor Pressure of water. Therefore, it may cause shrink or deformation of water-containing soft specimens such as plant cells due to evaporation of water. A solution to this Problem is to lower the specimen temperature and maintain saturated vapor Pressures of water at low as shown in Fig. 1 On this technique, there is a Published report of experiment to have sufficient signal to noise ratio for scondary electron imaging at a relatively long working distance using an environmental SEM. We report here a new low temperature microscopy of soft Plant cells using a variable Pressure SEM (Hitachi S-225ON).


1961 ◽  
Vol 06 (01) ◽  
pp. 025-036 ◽  
Author(s):  
James W. Hampton ◽  
William E. Jaques ◽  
Robert M. Bird ◽  
David M. Selby

Summary1. Infusions containing particulate matter, viz. whole amniotic fluid, amniotic fluid sediment, and glass beads, produce in dogs changes in both early and late phases of the clotting reaction. These changes are associated with the development of pulmonary hypertension.2. When dogs were given an active fibrinolysin followed by an infusion of whole amniotic fluid, the alterations in the clotting mechanism were either delayed or did not appear. No pulmonary hypertension developed in these animals.3. We infer that infusions containing particulate matter will produce in dogs both pulmonary hypertension and changes in the clotting mechanism. Although these are independent changes, both are as closely related to the damage to the pulmonary vessels as they are to the biological nature of the infusions.


2019 ◽  
Vol 6 (1) ◽  
pp. 44-49
Author(s):  
Tania Muñoz Jiménez ◽  
Aurora Torres Soto ◽  
María Dolores Torres Soto

En este documento se describe el desarrollo e implementación de un modelo para simular computacionalmente la dinámica del crecimiento y migración del cáncer cervicouterino, considerando sus principales características: proliferación, migración y necrosis, así como sus etapas de desarrollo. El modelo se desarrolló mediante un autómata celular con enfoques paralelo y secuencial. El autómata celular se basó en el modelo de Gompertz para simular las etapas de desarrollo de este cáncer, el cual se dividió en tres etapas cada una con diferentes comportamientos durante la simulación. Se realizó un diseño experimental con parámetros de entrada que se seleccionaron a partir de la investigación literaria y su discusión con médicos expertos. Al final del proceso de investigación, se logró obtener un algoritmo computacional de simulación muy bueno comparado con el modelo médico de Gompertz y se encontraron los mejores parámetros para su ejecución mediante un diseño factorial soportado estadísticamente. This paper describes the development and implementation of a model to computationally simulate the growth and migration dynamics of cervical cancer, considering its main characteristics: proliferation, migration and necrosis, as well as its stages of development. The model was developed by means of a cellular automaton with parallel and sequential approaches. The cellular automaton was based on the model of Gompertz to simulate the stages of development of this cancer, which was divided into three stages, each with different behaviors during the simulation. An experimental design was carried out with input parameters that were selected from literary research and its discussion with expert physicians. At the end of the research process, a very good simulation algorithm was obtained compared to the Gompertz medical model and the best parameters for its execution were found by means of a statistically supported factorial design.


2011 ◽  
Vol 1 (9) ◽  
pp. 53-55
Author(s):  
Abinash Dahal ◽  
◽  
Deepashree Devaraj ◽  
Dr. N. Pradhan Dr. N. Pradhan

2015 ◽  
Vol 60 (3) ◽  
pp. 263-267
Author(s):  
L.A. Bulavin ◽  
◽  
S.V. Khrapatyi ◽  
V.M. Makhlaichuk ◽  

2017 ◽  
Vol 32 (7) ◽  
pp. 731 ◽  
Author(s):  
XIE Yu-Zhou ◽  
PENG Chao-Qun ◽  
WANG Xiao-Feng ◽  
WANG Ri-Chu ◽  
LUO Feng

Sign in / Sign up

Export Citation Format

Share Document