Crystallization Time Dependence of Nanohybrid Shish-Kebab Structure in HDPE/PA66 Nanofibers Composites via Solution Crystallization

2011 ◽  
Vol 110-116 ◽  
pp. 3786-3790
Author(s):  
Wen Juan Han ◽  
Guo Qiang Zheng ◽  
Yan Yan Liang ◽  
Chun Tai Liu ◽  
Chang Yu Shen

In this study, PA66 nanofibers were successfully solution electrospun. The crystalline morphological features of HDPE solution induced by nanofibers were investigated by scanning electron microscopy (SEM). Nanohybrid shish-kebab (NHSK) can be formed in HDPE solution via isothermal crystallization, in which PA66 nanofibers serve as shish and HDPE lamellae act as kebabs surrounding the nanofibers periodically. Additionally, crystallization time has significant effect on the structure of HDPE kebab in NHSK, i.e., as crystallization time increases, the size of the kebab increases and the crystals decorated on PA66 nanofibers exhibit a three-dimensional growth (i.e., aggregate of crystallites) rather than a two-dimensional one (i.e., disc-like lamellae normal to the axis of nanofiber).

Hyomen Kagaku ◽  
1998 ◽  
Vol 19 (11) ◽  
pp. 747-751
Author(s):  
Katsuto TANAHASHI ◽  
Yuichi KAWAMURA ◽  
Naohisa INOUE ◽  
Yoshikazu HOMMA

1995 ◽  
Vol 391 ◽  
Author(s):  
George O. Ramseyer ◽  
Joseph V. Beasock ◽  
Herbert F. Helbig ◽  
Lois H. Walsh

AbstractThe volumes of slit, edge, erosion and erosion/slit voids in stressed and electromigrated aluminum conductor lines were quantitatively determined with low resolution standard and high resolution enhanced tips by atomic force microscopy. These three-dimensional results were compared to semiquantitative determinations of void volumes extrapolated from two-dimensional backscattered scanning electron microscopy area determinations of the passivated aluminum conductor. After the passivation was removed by plasma etching, void volumes were also determined from two-dimensional scanning electron microscopy micrographs. The volumes of the nearest hillocks on the anodic side of the voids were quantitatively determined by atomic force microscopy, and these hillock volumes were determined to be independent of the respective void volumes.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
R. I. Johnsson-Hegyeli ◽  
A. F. Hegyeli ◽  
D. K. Landstrom ◽  
W. C. Lane

Last year we reported on the use of reflected light interference microscopy (RLIM) for the direct color photography of the surfaces of living normal and malignant cell cultures without the use of replicas, fixatives, or stains. The surface topography of living cells was found to follow underlying cellular structures such as nuceloli, nuclear membranes, and cytoplasmic organelles, making possible the study of their three-dimensional relationships in time. The technique makes possible the direct examination of cells grown on opaque as well as transparent surfaces. The successful in situ electron microprobe analysis of the elemental composition and distribution within single tissue culture cells was also reported.This paper deals with the parallel and combined use of scanning electron microscopy (SEM) and the two previous techniques in a study of living and fixed cancer cells. All three studies can be carried out consecutively on the same experimental specimens without disturbing the cells or their structural relationships to each other and the surface on which they are grown. KB carcinoma cells were grown on glass coverslips in closed Leighto tubes as previously described. The cultures were photographed alive by means of RLIM, then fixed with a fixative modified from Sabatini, et al (1963).


1994 ◽  
Vol 42 (5) ◽  
pp. 681-686 ◽  
Author(s):  
V Rummelt ◽  
L M Gardner ◽  
R Folberg ◽  
S Beck ◽  
B Knosp ◽  
...  

The morphology of the microcirculation of uveal melanomas is a reliable market of tumor progression. Scanning electron microscopy of cast corrosion preparations can generate three-dimensional views of these vascular patterns, but this technique sacrifices the tumor parenchyma. Formalin-fixed wet tissue sections 100-150 microns thick from uveal melanomas were stained with the lectin Ulex europaeus agglutinin I (UEAI) and proliferating cell nuclear antigen (PCNA) to demonstrate simultaneously the tumor blood vessels and proliferating tumor cells. Indocarbocyanine (Cy3) was used as a fluorophore for UEAI and indodicarbocyanine (Cy5) was used for PCNA. Double labeled sections were examined with a laser scanning confocal microscope. Images of both stains were digitized at the same 5-microns intervals and each of the two images per interval was combined digitally to form one image. These combined images were visualized through voxel processing to study the relationship between melanoma cells expressing PCNA and various microcirculatory patterns. This technique produces images comparable to scanning electron microscopy of cast corrosion preparations while permitting simultaneous localization of melanoma cells expressing PCNA. The microcirculatory tree can be viewed from any perspective and the relationship between tumor cells and the tumor blood vessels can be studied concurrently in three dimensions. This technique is an alternative to cast corrosion preparations.


Sign in / Sign up

Export Citation Format

Share Document