Design of Quaternary Half Adder Using Hybrid SETMOS Cell

2011 ◽  
Vol 110-116 ◽  
pp. 5085-5089
Author(s):  
Khadijeh Feizi ◽  
Ali Shahhoseini

Adder is one of the important arithmetic units in computers. In this paper, we investigate the implementation of quaternary half adder based on multiple-valued (MV) logic gates using single electron transistor (SET) and metal-oxide-semiconductor (MOS) transistor. We use hybrid SETMOS universal literal gate which has been proposed by Mahapatra and Ionesco. We apply two 4-radix inputs to the proposed quaternary half adder and obtain sum and carry outputs. The logic operation of the proposed quaternary half adder is verified by using HSPICE simulator. Moreover we compare the performance of our proposed quaternary half adder with the performance of a quaternary half adder based on MOS technology.

2006 ◽  
Vol 89 (7) ◽  
pp. 073106 ◽  
Author(s):  
G. M. Jones ◽  
B. H. Hu ◽  
C. H. Yang ◽  
M. J. Yang ◽  
Russell Hajdaj ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1683
Author(s):  
Winai Jaikla ◽  
Fabian Khateb ◽  
Tomasz Kulej ◽  
Koson Pitaksuttayaprot

This paper proposes the simulated and experimental results of a universal filter using the voltage differencing differential difference amplifier (VDDDA). Unlike the previous complementary metal oxide semiconductor (CMOS) structures of VDDDA that is present in the literature, the present one is compact and simple, owing to the employment of the multiple-input metal oxide semiconductor (MOS) transistor technique. The presented filter employs two VDDDAs, one resistor and two grounded capacitors, and it offers low-pass: LP, band-pass: BP, band-reject: BR, high-pass: HP and all-pass: AP responses with a unity passband voltage gain. The proposed universal voltage mode filter has high input impedances and low output impedance. The natural frequency and bandwidth are orthogonally controlled by using separated transconductance without affecting the passband voltage gain. For a BP filter, the root mean square (RMS) of the equivalent output noise is 46 µV, and the third intermodulation distortion (IMD3) is −49.5 dB for an input signal with a peak-to peak of 600 mV, which results in a dynamic range (DR) of 73.2 dB. The filter was designed and simulated in the Cadence environment using a 0.18-µm CMOS process from Taiwan semiconductor manufacturing company (TSMC). In addition, the experimental results were obtained by using the available commercial components LM13700 and AD830. The simulation results are in agreement with the experimental one that confirmed the advantages of the filter.


Sign in / Sign up

Export Citation Format

Share Document