Oxidation Kinetics of Self-Lubricating Ti-48%Al-2%Nb-2%Cr-x%CaF2 Composites

2011 ◽  
Vol 121-126 ◽  
pp. 288-292
Author(s):  
Li Ying Yang ◽  
Shou Ren Wang ◽  
Ying Zi Wang ◽  
Ru Ma ◽  
Yong Wang

The Oxidation kinetics of Ti-48Al-2Nb-2Cr composites (TANC) with addition of different weight contents of CaF2 solid lubricant was evaluated. It is indicated that oxidation dynamic curve follow quasi-parabolic rate law under 800 °C. Once the temperature exceed 1100 °C, the oxidation dynamic curve seems to do not follow quasi-parabolic rate law. The contents of solid lubricant in TANC matrix occur an important influence for oxidation resistance

2013 ◽  
Vol 785-786 ◽  
pp. 844-847
Author(s):  
Jun Huai Xiang ◽  
Xian Chao Xu ◽  
Ling Yun Bai ◽  
Yun Xiang Zheng ◽  
Huai Shu Zhang

The cyclic oxidation behavior of Co-10Cr-5Al alloys with and without Y in atmosphere at 800 °C was investigated. The addition of 0.3 at.% Y increased the oxidation rate of the alloy and changed the behavior from irregular oxidation kinetics to approximate parabolic rate law. The scales grown the alloys with and without Y were both composed of an outer Co2O3layer and an inner complex layer of Al2O3, Co2O3and Cr2O3, except that the addition of Y impaired the adhesion of the scale. Over-doped Y agglomerated in local zone plays an adverse role in the oxidation process by accelerating the oxidation rate.


2014 ◽  
Vol 528 ◽  
pp. 25-29
Author(s):  
Ling Yun Bai ◽  
Xian Chao Xu ◽  
Jun Huai Xiang ◽  
Yun Xiang Zheng ◽  
Jun Wang

The cyclic oxidation behavior of Co-10Cr-5Al alloys in atmosphere at 700 °C was investigated. The addition of 0.3 at.% Y changed the oxidation behavior from the approximate parabolic rate law to complex mode. The scale grown on the surface of Co-10Cr-5Al cracked seriously, while the oxide scale the Y doped alloy had better adhesive property. Yttrium doped in the sample promoted the forming of continuous Al2O3layer and decreased the oxidation rate of Co-10Cr-5Al alloys.


2011 ◽  
Vol 391-392 ◽  
pp. 606-610 ◽  
Author(s):  
Huai Shu Zhang ◽  
Hong Hua Zhang ◽  
Jun Huai Xiang ◽  
Shan Wang ◽  
Di Wu

The oxidation behavior of Co-10Cr-5Al-0.3Y alloy in 1 atm of pure O2 at 700°C was investigated. The addition of 0.3 at.%Y significantly increased the oxidation rate of the alloy and changed the oxidation behavior from the approximate parabolic rate law to linear rate law. The scale grown on the surface at 700°C was porous with many small voids and cracks, and was composed of an outer CoO layer and an inner complex layer rich in Al2O3 and Cr2O3 which were intermingled with yttric oxide and spinel Co(Cr, Al)2O4.


ACS Catalysis ◽  
2017 ◽  
Vol 7 (7) ◽  
pp. 4896-4903 ◽  
Author(s):  
Andreas Kafizas ◽  
Yimeng Ma ◽  
Ernest Pastor ◽  
Stephanie R. Pendlebury ◽  
Camilo Mesa ◽  
...  

1989 ◽  
Vol 146 ◽  
Author(s):  
Stephan E Lassig ◽  
John L

ABSTRACTA study of the oxidation kinetics of lightly doped (100) silicon in dry oxygen has been carried out at different pressures (0.03 atm. to 1.0 atm.) and temperatures (900ºC to 1200ºC) for short times (< 500 seconds). The data can be fit equally well to the parabolic model as it can to the linearparabolic or parallel oxidation models. The activation energy derived from analysis of the parabolic rate constant is 0.94 eVand is the same at 1.0 and 0.1 atmosphere dry O2. It was also found that the parabolic rate constant displayed a linear dependence on the O2 pressure.


2012 ◽  
Vol 31 (6) ◽  
pp. 775-779 ◽  
Author(s):  
Z. Grzesik ◽  
Z. Jurasz ◽  
K. Adamaszek ◽  
S. Mrowec

AbstractThe oxidation kinetics of four Fe-Cr-Mn-Ni based steels, utilized in automobile industry, have been studied as a function of temperature (973–1273 K) and oxygen partial pressure (5–105 Pa). It has been shown that the rate of corrosion of these steels under isothermal conditions is determined by diffusion of reagents through the scale, which phase composition and morphology depend first of all on chromium and to some extend also on nickel and manganese contents. The highest oxidation resistance at high temperatures is observed in the case of the X33CrNiMn23-8 steel, containing highest chromium concentration, equal 23.4 wt.% and nickel equal 7.8 wt.%. The remaining three steels with virtually the same chromium content (≈20 wt.%), but lower than that in the first one, show comparable oxidation resistance. Small differences in the oxidation rates of these three steels may be related to different nickel and manganese contents. It has been found also that the rate of corrosion of all steels under investigation does not depend under steady state conditions on oxygen partial pressure.


Author(s):  
Hediyeh Dabbaghi ◽  
Mohammadreza Nematollahi ◽  
Keyvan Safaei Baghbaderani ◽  
Parisa Bayatimalayeri ◽  
Mohammad Elahinia

Abstract NiTi-based high-temperature shape memory alloys (HTSMAs) such as NiTiHf have been utilized in a broad range of applications due to their high strength and work output, as well as, their ability to increase the transformation temperatures (TTs). Recently, additive manufacturing techniques (AM) have been widely used to fabricate complex shape memory alloy components without any major modifications or tooling and has paved the way to tailor the manufacturing and fabrications of microstructure and critical properties of their final parts. NiTi alloys properties such as transformation temperatures can be significantly altered due to oxidation, which can occur during the manufacturing process or post-processing. In this work, the oxidation behavior of Ni-rich NiTi20Hf shape memory alloys, which was fabricated by the selective laser melting (SLM) method, is evaluated. Thermogravimetric analysis (TGA) is used to assess the kinetic behavior of the oxidation at different temperature ranges of 500, 700, and 900 °C for 20 hours in the air. After oxidation, to evaluate the microstructure and chemical composition X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) was conducted. The isothermal oxidation kinetics of conventional NiTi20Hf alloys were studied, and the results were compared to AM samples. Results show a two-stage oxidation rate at which oxidation increased with the high rate at the initial stage. As the oxidation time increased, the oxidation rate gradually decreased. The oxidation behavior of NiTiHf alloys initially obeyed logarithmic rate law and then followed by parabolic rate law. SEM results showed the formation of a multi-layered oxide scale, including TiO2, NiTiO3, and Hf oxide.


2020 ◽  
Author(s):  
Camilo A. Mesa ◽  
Ludmilla Steier ◽  
Benjamin Moss ◽  
Laia Francàs ◽  
James E. Thorne ◽  
...  

<p><i>Operando</i> spectroelectrochemical analysis is used to determine the water oxidation reaction kinetics for hematite photoanodes prepared using four different synthetic procedures. Whilst these photoanodes exhibit very different current / voltage performance, their underlying water oxidation kinetics are found to be almost invariant. Lower photoanode performance was found to correlate with the observation of optical signals indicative of charge accumulation in mid-gap oxygen vacancy states, indicating these states do not contribute directly to water oxidation.</p>


1998 ◽  
Vol 32 (19) ◽  
pp. 2990-2996 ◽  
Author(s):  
Lukas Emmenegger ◽  
D. Whitney King ◽  
Laura Sigg ◽  
Barbara Sulzberger

Sign in / Sign up

Export Citation Format

Share Document