Experimental Study on Pollution Emissions of the DLN Combustor

2011 ◽  
Vol 138-139 ◽  
pp. 958-961
Author(s):  
Xu Li ◽  
Kai Liu

Experimental study of combustor of heavy-duty gas turbine (E) which is the first independent intellectual property rights has been finished on high-pressure test system by China Gas Turbine Establishment of AVIVI. The content of CO and UHC are very low, the combustion is stable and efficient, the combustion efficiency is over 99%; pollution emissions (NOx) are 225mg/m3 (15%O2) under rated condition, which is not meet the design requirements. The results indicated: The radio of on-watch-fuel is large, which makes the content of NOx is large; uneven premixed fuel is another important reason that makes the content of NOx is large. The conclusion has provided the reliable basis for gas turbine’s design and development.

2011 ◽  
Vol 138-139 ◽  
pp. 962-966 ◽  
Author(s):  
Kai Liu ◽  
Li Xu

Experimental study on combustor outlet temperature field of heavy-duty gas turbine had been finished on high-pressure test system. Experimental results indicate: The OTDF is sensitive to diameter of dilution holes, and the RTDF is sensitive to location of dilution holes. The test results have important guiding significance and reference value to design, commission and working about the similar combustor.


2013 ◽  
Vol 300-301 ◽  
pp. 104-107
Author(s):  
Kai Liu

Experimental study on combustor outlet temperature field of heavy-duty gas turbine had been finished on high-pressure test system. Experimental results indicate: The OTDF is sensitive to diameter of dilution holes, and the RTDF is sensitive to location of dilution holes. The test results have important guiding significance and reference value to design, commission and working about the similar combustor.


2011 ◽  
Vol 66-68 ◽  
pp. 307-310
Author(s):  
Xu Li ◽  
Kai Liu

Experimental investigation results of the fuel nozzle group in a heavy-duty gas turbine are presented. Atomization characteristic has great impact about combustion efficiency, ignition performance, and outlet temperature field of combustor. Obtained atomization characteristic about spray particle size and distribution using LDV/PDPA system. These experimental data have provided reliable basis for the nozzle group design, development and operation.


2011 ◽  
Vol 354-355 ◽  
pp. 488-491
Author(s):  
Kai Liu ◽  
Bao Cheng Zhang ◽  
Hong An Ma

Experimental investigation results of the fuel injector group in a heavy-duty gas turbine are presented. Atomization characteristic has great impact about combustion, inflame, temperature field of outlet. Obtained atomization characteristic about spray particle size and spray angle using LDV/PDPA system, determined dimension of injector group. On the basis of these tests, the combustion testing of the injector group in the flame tube is made, its every targets are arrived in the design requirements. This has demonstrated: the test systems and test methods are practical, feasible and reliable. These experimental data have provided the reliable basis for the injector group design and development.


2013 ◽  
Vol 300-301 ◽  
pp. 185-188 ◽  
Author(s):  
Kai Liu ◽  
Li Yan Sun

Experimental investigation results of the fuel injector group in a heavy-duty gas turbine are presented. Atomization characteristic has great impact about combustion, inflame, temperature field of outlet. Obtained atomization characteristic about spray particle size and spray angle using LDV/PDPA system, determined dimension of injector group. On the basis of these tests, the combustion testing of the injector group in the flame tube is made, its every targets are arrived in the design requirements. This has demonstrated: the test systems and test methods are practical, feasible and reliable. These experimental data have provided the reliable basis for the injector group design and development.


Author(s):  
Jean-Louis Meyer ◽  
Guy Grienche

The injection of steam into a gas turbine allows a reduction in nitrogen oxide (NOx) emissions and an increase in power and efficiency. In this way, and due especially to their lower investment costs, massive steam injection cycles could represent an interesting concept for intermediate-load power plants. When EDF and TURBOMECA jointly decided to carry out an experimental study of the consequences of steam injection into a gas turbine, two test phases were defined: firstly, a limited steam injection phase to assess the effect of steam on combustion, and secondly, a massive injection phase to assess the behavior and the performance capabilities of the machine. This second phase also aimed at identifying the critical points likely to appear when adapting a heavy-duty gas turbine to massive steam injection. This publication summarizes the main results of these two phases of tests.


2017 ◽  
Author(s):  
Andrew Detor ◽  
◽  
Richard DiDomizio ◽  
Don McAllister ◽  
Erica Sampson ◽  
...  

2011 ◽  
Vol 84-85 ◽  
pp. 259-263
Author(s):  
Xun Liu ◽  
Song Tao Wang ◽  
Xun Zhou ◽  
Guo Tai Feng

In this paper, the trailing edge film cooling flow field of a heavy duty gas turbine cascade has been studied by central difference scheme and multi-block grid technique. The research is based on the three-dimensional N-S equation solver. By way of analysis of the temperature field, the distribution of profile pressure, and the distribution of film-cooling adiabatic effectiveness in the region of trailing edge with different cool air injection mass and different angles, it is found that the impact on the film-cooling adiabatic effectiveness is slightly by changing the injection mass. The distribution of profile pressure dropped intensely at the pressure side near the injection holes line with the large mass cooling air. The cooling effect is good in the region of trailing edge while the injection air is along the direction of stream.


Sign in / Sign up

Export Citation Format

Share Document