Research on Nondestructive Image Compression Technology Based on Genetic Algorithm

2012 ◽  
Vol 155-156 ◽  
pp. 789-794
Author(s):  
Jie He ◽  
Hui Guo

Based on nondestructive and block iteration function the characteristics of the system, and put forward a kind of improved the global optimal solution from similar partition adaptive genetic algorithm is proposed. In the algorithm for the father the searching space of the individual pieces by gray coding method; Definition of father and son of minimum error for the match fitness function; Genetic algorithm is put forward the improvement of the linear adaptive crossover and mutation probability; Take excellent protection strategy choice. The experimental results show that this method in the similar image guarantee the quality and the compression ratio decompression also can obviously reduce compressed time, effectively improve the searching efficiency.

2013 ◽  
Vol 321-324 ◽  
pp. 2137-2140 ◽  
Author(s):  
Bing Chang Ouyang

Considering discrete demand and time-vary unit production cost under a foreseeable time horizon, this study presents an adaptive genetic algorithm to determine the production policy for one manufacturer supplying single item to multiple warehouses in a supply chain environment. Based on Distribution Requirement Planning (DRP) and Just in Time (JIT) delivery policy, we assume each gene in chromosome represents a period. Standard GA operators are used to generate new populations. These populations are evaluated by a fitness function using the total cost of production scheme. An explicit procedure for obtaining the local optimal solution is provided.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1037-1041
Author(s):  
Min Qin ◽  
Yang Peng ◽  
Xian Liang Yu

Traditional reservoir scheduling guarantees efficient utilization of water resources and maximizes hydropower station operation efficiency. However it doesn’t consider the surrounding ecological environment demand. Ecological operation which is based on Traditional reservoir scheduling makes the reservoir achieve long-term, sustainable operation and reduce adverse impacts on the ecological environment. Xiangjiaba reservoir is the ties of the downstream of jinsha river and the Yangtze river which is located in jinsha river basin ecological sensitive area. So the completion of the Xiangjiaba reservoir must result in unhealthy ecological environment impact. With traditional genetic algorithm (GA) encoding complexity and being easy to fall into local convergence limitation, put forward a kind of improved convergence of genetic algorithm, the improved genetic algorithm with real number coding and fitness function which is converted into a nonlinear trigonometric function selection operator. Select the adaptive crossover probability and mutation probability adjust, in order to improve the convergence of the algorithm. RVA method is used to calculate the IHA index upper and lower threshold value and the upper and lower threshold could value as the constraint conditions of ecological scheduling objective function model. The results show that the improved genetic algorithm converge makes the global optimal solution ability stronger and faster; RVA method is suitable for the jinshajiang river and results are more comprehensive and more reasonable.


2021 ◽  
Vol 16 (5) ◽  
pp. 1186-1216
Author(s):  
Nikola Simkova ◽  
Zdenek Smutny

An opportunity to resolve disputes as an out-of-court settlement through computer-mediated communication is usually easier, faster, and cheaper than filing an action in court. Artificial intelligence and law (AI & Law) research has gained importance in this area. The article presents a design of the E-NeGotiAtion method for assisted negotiation in business to business (B2B) relationships, which uses a genetic algorithm for selecting the most appropriate solution(s). The aim of the article is to present how the method is designed and contribute to knowledge on online dispute resolution (ODR) with a focus on B2B relationships. The evaluation of the method consisted of an embedded single-case study, where participants from two countries simulated the realities of negotiation between companies. For comparison, traditional negotiation via e-mail was also conducted. The evaluation confirms that the proposed E-NeGotiAtion method quickly achieves solution(s), approaching the optimal solution on which both sides can decide, and also very importantly, confirms that the method facilitates negotiation with the partner and creates a trusted result. The evaluation demonstrates that the proposed method is economically efficient for parties of the dispute compared to negotiation via e-mail. For a more complicated task with five or more products, the E-NeGotiAtion method is significantly more suitable than negotiation via e-mail for achieving a resolution that favors one side or the other as little as possible. In conclusion, it can be said that the proposed method fulfills the definition of the dual-task of ODR—it resolves disputes and builds confidence.


Author(s):  
V. A. Turchina ◽  
D. O. Tanasienko

One of the main tasks in organizing the educational process in higher education is the drawing up of a schedule of classes. It reflects the weekly student and faculty load. At the same time, when compiling, there are a number of necessary conditions and a number of desirable. The paper considers seven required and four desirable conditions. In this paper, one of the well-known approaches that can be used in drawing up a curriculum is consid-ered. The proposed scheme of the genetic algorithm, the result of which is to obtain an approximate solution to the problem of scheduling with the need to further improve it by other heuristic methods. To solve the problem, an island model of the genetic algorithm was selected and its advantages were considered. In the paper, the author's own structure of the individual, which includes chromosomes in the form of educational groups and genes as a lesson at a certain time, is presented and justified. The author presents his own implementations of the genetic algorithms. During the work, many variants of operators were tested, but they were rejected due to their inefficiency. The biggest problem was to maintain the consistency of information encoded in chromosomes. Also, two post-steps were added: to try to reduce the number of teacher conflict conflicts and to normalize the schedule - to remove windows from the schedule. The fitness function is calculated according to the following principles: if some desired or desired property is present in the individual, then a certain number is deducted from the individual's assessment, if there is a negative property, then a certain number is added to the assessment. Each criterion has its weight, so the size of the fine or rewards may be different. In this work, fines were charged for non-fulfillment of mandatory conditions, and rewards for fulfilling the desired


2013 ◽  
Vol 333-335 ◽  
pp. 1256-1260
Author(s):  
Zhen Dong Li ◽  
Qi Yi Zhang

For the lack of crossover operation, from three aspects of crossover operation , systemically proposed one kind of improved Crossover operation of Genetic Algorithms, namely used a kind of new consistent Crossover Operator and determined which two individuals to be paired for crossover based on relevance index, which can enhance the algorithms global searching ability; Based on the concentrating degree of fitness, a kind of adaptive crossover probability can guarantee the population will not fall into a local optimal result. Simulation results show that: Compared with the traditional cross-adaptive genetic Algorithms and other adaptive genetic algorithm, the new algorithms convergence velocity and global searching ability are improved greatly, the average optimal results and the rate of converging to the optimal results are better.


2015 ◽  
Vol 713-715 ◽  
pp. 1579-1582
Author(s):  
Shao Min Zhang ◽  
Ze Wu ◽  
Bao Yi Wang

Under the background of huge amounts of data in large-scale power grid, the active power optimization calculation is easy to fall into local optimal solution, and meanwhile the calculation demands a higher processing speed. Aiming at these questions, the farmer fishing algorithm which is applied to solve the problem of optimal distribution of active load for coal-fired power units is used to improve the cloud adaptive genetic algorithm (CAGA) for speeding up the convergence phase of CAGA. The concept of cloud computing algorithm is introduced, and parallel design has been done through MapReduce graphs. This method speeds up the calculation and improves the effectiveness of the active load optimization allocation calculation.


Author(s):  
Sushrut Kumar ◽  
Priyam Gupta ◽  
Raj Kumar Singh

Abstract Leading Edge Slats are popularly being put into practice due to their capability to provide a significant increase in the lift generated by the wing airfoil and decrease in the stall. Consequently, their optimum design is critical for increased fuel efficiency and minimized environmental impact. This paper attempts to develop and optimize the Leading-Edge Slat geometry and its orientation with respect to airfoil using Genetic Algorithm. The class of Genetic Algorithm implemented was Invasive Weed Optimization as it showed significant potential in converging design to an optimal solution. For the study, Clark Y was taken as test airfoil. Slats being aerodynamic devices require smooth contoured surfaces without any sharp deformities and accordingly Bézier airfoil parameterization method was used. The design process was initiated by producing an initial population of various profiles (chromosomes). These chromosomes are composed of genes which define and control the shape and orientation of the slat. Control points, Airfoil-Slat offset and relative chord angle were taken as genes for the framework and different profiles were acquired by randomly modifying the genes within a decided design space. To compare individual chromosomes and to evaluate their feasibility, the fitness function was determined using Computational Fluid Dynamics simulations conducted on OpenFOAM. The lift force at a constant angle of attack (AOA) was taken as fitness value. It was assigned to each chromosome and the process was then repeated in a loop for different profiles and the fittest wing slat arrangement was obtained which had an increase in CL by 78% and the stall angle improved to 22°. The framework was found capable of optimizing multi-element airfoil arrangements.


2014 ◽  
Vol 644-650 ◽  
pp. 1965-1968
Author(s):  
Yue Li Li ◽  
Chao Wang

The method provided in this paper can be according to the current population to readjust the weight, thus obtain toward the positive ideal point search pressure, finally converge to the optimal solution. This paper combines the feasible direction into genetic algorithm. This method can lead the individual to optimal solution region along feasible direction which approach the optimal solution sets. Through evaluating the degree of distance between chromosome and constrain, we introduce membership function into traditional GA and embed the information of infeasible solutions into fitness function. Propose a self-adapting evaluation function. This method can readjust the weights according to current group and then get the stress of searching to the ideal positive point. To a kind of fuzzy multi-objective optimization problem, propose a method of best satisfaction to transform the fuzzy models to clear ones and solve the models using GA based on interactive method. Then testify its validity though examples.


2014 ◽  
Vol 538 ◽  
pp. 193-197
Author(s):  
Jian Jiang Su ◽  
Chao Che ◽  
Qiang Zhang ◽  
Xiao Peng Wei

The main problems for Genetic Algorithm (GA) to deal with the complex layout design of satellite module lie in easily trapping into local optimality and large amount of consuming time. To solve these problems, the Bee Evolutionary Genetic Algorithm (BEGA) and the adaptive genetic algorithm (AGA) are introduced. The crossover operation of BEGA algorithm effectively reinforces the information exploitation of the genetic algorithm, and introducing random individuals in BEGA enhance the exploration capability and avoid the premature convergence of BEGA. These two features enable to accelerate the evolution of the algorithm and maintain excellent solutions. At the same time, AGA is adopted to improve the crossover and mutation probability, which enhances the escaping capability from local optimal solution. Finally, satellite module layout design based on Adaptive Bee Evolutionary Genetic Algorithm (ABEGA) is proposed. Numerical experiments of the satellite module layout optimization show that: ABEGA outperforms SGA and AGA in terms of the overall layout scheme, enveloping circle radius, the moment of inertia and success rate.


2016 ◽  
Vol 33 (3) ◽  
Author(s):  
Feng Lu ◽  
Yafan Wang ◽  
Jinquan Huang ◽  
Qihang Wang

AbstractA hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.


Sign in / Sign up

Export Citation Format

Share Document