Vibration Fault Analysis in Screw Compressor and Foundation

2012 ◽  
Vol 166-169 ◽  
pp. 1072-1075
Author(s):  
Ying Ming Zhou ◽  
Zhi Min Song ◽  
Hai Feng Zhao ◽  
Shu Yun Mi

With the characteristics of low noise, low vibration, high reliability and long life, Screw Compressor is the indispensable main equipment which widely used in petrochemical field. The abnormal vibration of Compressor will affect normal operation of the host, lead to damage of some main parts such as Compressor and motor and at the same time it’s an unneglectable hidden trouble for equipment’s safe operation. This article takes the data acquisition of vibration and the analyses of shake for two Ammonia Refrigeration Piston Compressors, and study at the reason about shock then take the effective shockproof treatment plan. All these ensure the stable running of the facility.

2019 ◽  
Vol 9 (16) ◽  
pp. 3246 ◽  
Author(s):  
Wu ◽  
Wang ◽  
Liu ◽  
He ◽  
Xie

The rolling bearings in moment wheel assemblies (MWAs) or control moment gyros (CMGs) are not only the core components in spacecrafts but also prone to failure. Therefore, a high reliability is the critical characteristic for spacecraft bearings, and long-life testing on the ground is one of the main means for bearing reliability assessment. In practical applications, a convenient and reliable method is required for monitoring the health status of abnormal bearings in MWAs during the long-life test. In this paper, a monitoring method based on the clustering fusion of normal operation acoustic parameters is proposed for the identification of abnormal bearings. Firstly, the characteristics of MWA’s acoustic signal and its feasibility as a monitoring medium are clarified based on tests and modal analysis. Then statistical parameters and sound quality parameters are introduced to characterize the changes caused by bearing faults, and the root mean square (RMS), kurtosis, and sharpness parameters are selected to construct the feature vectors. The K-medoids clustering technology is used to fuse the characteristic parameters, and the safety distance for normal bearing operation can be obtained by a suitable method. Finally, the abnormal index is presented based on the excess rate and excess distance to judge the abnormal states of several types of bearings through tests. The research results indicate that the presented monitoring method based on the clustering of the normal operation acoustic parameters can not only identify various faults of the spacecraft bearing (ball defects, outer ring defects, cage instability, etc.) effectively but also give a quantitative evaluation of the severity of the abnormality.


Machines ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jing Wang ◽  
Zhihua Wan ◽  
Zhurong Dong ◽  
Zhengguo Li

The harmonic reducer, with its advantages of high precision, low noise, light weight, and high speed ratio, has been widely used in aerospace solar wing deployment mechanisms, antenna pointing mechanisms, robot joints, and other precision transmission fields. Accurately predicting the performance of the harmonic reducer under various application conditions is of great significance to the high reliability and long life of the harmonic reducer. In this paper, a set of automatic harmonic reducer performance test systems is designed. By using the CANOpen bus interface to control the servo motor as the drive motor, through accurately controlling the motor speed and rotation angle, collecting the angle, torque, and current in real time, the life cycle test of space harmonic reducer was carried out in high vacuum and low temperature environment on the ground. Then, the collected data were automatically analyzed and calculated. The test data of the transmission accuracy, backlash, and transmission efficiency of the space harmonic reducer were obtained. It is proven by experiments that the performance data of the harmonic reducer in space work can be more accurately obtained by using the test system mentioned in this paper, which is convenient for further research on related lubricating materials.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4274
Author(s):  
Eunsuk Choi ◽  
Sunjin Kim ◽  
Jinsil Gong ◽  
Hyeonjeong Sun ◽  
Minjin Kwon ◽  
...  

In this article we report on a 3 × 3 mm tactile interaction sensor that is able to simultaneously detect pressure level, pressure distribution, and shear force direction. The sensor consists of multiple mechanical switches under a conducting diaphragm. An external stimulus is measured by the deflection of the diaphragm and the arrangement of mechanical switches, resulting in low noise, high reliability, and high uniformity. Our sensor is able to detect tactile forces as small as ~50 mgf along with the direction of the shear force. It also distinguishes whether there is a normal pressure during slip motion. We also succeed in detecting the contact shape and the contact motion, demonstrating potential applications in robotics and remote input interfaces. Since our sensor has a simple structure and its function depends only on sensor dimensions, not on an active sensing material, in comparison with previous tactile sensors, our sensor shows high uniformity and reliability for an array-type integration.


Author(s):  
R.F. Caristi ◽  
J.B. Roy ◽  
R.L. Brooks ◽  
A.J. Pennell
Keyword(s):  

2013 ◽  
Vol 56 (3) ◽  
Author(s):  
Zhang Qi-sheng ◽  
Deng Ming ◽  
Guo Jian ◽  
Luo Wei-bing ◽  
Wang Qi ◽  
...  

<p>There has been considerable development of seismic detectors over the last 80 years. However, there is still a need to further develop new earthquake exploration and data acquisition systems with high precision. In particular, for China to keep up with the latest technology of these systems, it is important to be involved in the research and development, instead of importing systems that soon fall behind the latest technology. In this study, the features of system-on-a-programmable-chip (SoPC) technology are analyzed and used to design a new digital seismic-data acquisition station. The hardware circuit of the station was developed, and the analog board and the main control data-transmission board were designed according to the needs of digital seismic-data acquisition stations. High-definition analog-to-digital converter sequential digital filter technology of the station (cascade integrator comb filter, finite impulse response digital filter) were incorporated to provide advantages to the acquisition station, such as high definition, large dynamic scope, and low noise. A specific data-transmission protocol was designed for the station, which ensured a transmission speed of 16 Mbps along a 55-m wire with low power consumption. Synchronic acquisition was researched and developed, so as to achieve accuracy better than 200 ns. The key technologies were integrated into the SoPC of the main control data-transmission board, so as to ensure high-resolution acquisition of the station, while improving the accuracy of the synchronic acquisition and data-transmission speed, lowering the power consumption, and preparing for the follow-up efforts to tape out.</p>


2013 ◽  
Vol 2013 (HITEN) ◽  
pp. 000075-000081
Author(s):  
Ramesh Khanna ◽  
Srinivasan Venkataraman

Harsh Environment approved components/ designs require high reliability as well as availability of power to meet their system needs. The paper will explore the various design constrains imposed on the high temperature designs. Down hole oil and gas industry requires high reliability components that can withstand high temperature. Discrete component selection, packaging and constrains imposed by various specification requirements to meet harsh environment approval are critical aspect of high-temp designs. High temperature PCB material, PCB layout techniques, trace characteristics are an important aspect of high-temperature PCB design and will be explored in the article. Buck Converters are the basic building blocks, but in order to meet system requirements to power FPGA's where low output voltage and high currents are required. Converter must be able to provide wider step down ratios with high transient response so buck converters are used. The paper with explore the various features of a buck-based POL converter design. Low noise forces the need for Low-dropout (LDO) Regulators that can operate at high Temperatures up to 210°C. This paper will address the power requirements to meet system needs.


MRS Advances ◽  
2019 ◽  
Vol 4 (49) ◽  
pp. 2635-2640
Author(s):  
Chavis A. Stackhouse ◽  
Alyson Abraham ◽  
Kenneth J. Takeuchi ◽  
Esther S. Takeuchi ◽  
Amy C. Marschilok

ABSTRACTLithium solid-state composite electrolytes (LiSCEs) provide the opportunity for long life spans, low self-discharge, high reliability, high energy density, and safety. Additionally, this class of electrolytes can be used in electrolytically formed solid-state batteries (EFBs), which may promote reductions in cell manufacturing costs due to their simplicity of design and permit the formation of batteries with diverse architectures. Herein, we provide a discussion of LiSCEs, highlight some of the recent progress in EFB development, and present a forward outlook.


2012 ◽  
Vol 479-481 ◽  
pp. 2246-2249
Author(s):  
Cui Zhi Chang

In this paper, a flammable gas monitoring circuit is designed based on TGS813 that is a flammable gas sensor and has the characteristic of long life-pan, low prices. The principle and structure of TGS813 are introduced as well as applied in multi-channel data acquisition circuit.


2012 ◽  
Vol 131 (4) ◽  
pp. 3225-3225 ◽  
Author(s):  
D. Alabaster ◽  
P.R. Herrington ◽  
J. Waters
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document