Study on the Constitutive Model of Composite Materials in Elastic-Plastic Stage

2012 ◽  
Vol 166-169 ◽  
pp. 73-77
Author(s):  
Huan Chao Qin ◽  
Ju Lin Wang

Elastic-plastic properties of composite materials are an important part of the study on micromechanics. Based on the plastic strain of matrix, the elastic-plastic constitutive model of composite materials is presented in this paper, while considering the influence of the transient flexibility matrix on the flexibility matrix. In comparison with the experimental results, theoretical analysis of the presented model is validated.

1990 ◽  
Vol 112 (3) ◽  
pp. 287-291 ◽  
Author(s):  
F. A. Kolkailah ◽  
A. J. McPhate

In this paper, results from an elastic-plastic finite-element model incorporating the Bodner-Partom model of nonlinear time-dependent material behavior are presented. The parameters in the constitutive model are computed from a leastsquare fit to experimental data obtained from uniaxial stress-strain and creep tests at 650°C. The finite element model of a double-notched specimen is employed to determine the value of the elastic-plastic strain and is compared to experimental data. The constitutive model parameters evaluated in this paper are found to be in good agreement with those obtained by the other investigators. However, the parameters determined by the numerical technique tend to give response that agree with the data better than do graphically determined parameters previously used. The calculated elastic-plastic strain from the model agreed well with the experimental strain.


Author(s):  
A. S. Zaki ◽  
H. Ghonem

Abstract This paper describes the cyclic accumulative plastic strain in a polycrystalline material when subjected to loading conditions promoting ratcheting behavior. For this purpose, a unified viscoplastic constitutive model based on non-linear kinematic hardening formulation is implemented. Identification of the model parameters was carried out using an experimental program that included monotonic, cyclic and relaxation testing. Simulation of the material response using the proposed model is compared with experimental results for the same loading. This comparison is used to evaluate the model validity.


1991 ◽  
Vol 113 (3) ◽  
pp. 314-323 ◽  
Author(s):  
F. Ellyin ◽  
Z. Xia

In this part a rate-dependent elastic-plastic constitutive model is presented which is an extension of our earlier rate-indpendent model. The effect of prior creep on the subsequent inelastic deformation is also included. The model can be used to predict inelastic processes with variable strain (stress) rates. It is shown, through comparison with the experimental results, that most of the rate-effect features of the material response can be simulated by the model. Despite the wide range of application, the model is relatively simple and incorporated a few material constants which could be easily determined from standard tests.


Author(s):  
Xuejiao Shao ◽  
Hai Xie ◽  
Furui Xiong ◽  
Xiaolong Fu ◽  
Kaikai Shi ◽  
...  

Abstract In the fatigue assessment of nuclear components following the RCC-M B3200, if the results using the simplified elastic-plastic method cannot meet the Code’s requirements, it is necessary to conduct a detailed elastic-plastic fatigue analysis of the component. In this paper, the A-F and Chaboche nonlinear kinematic hardening constitutive models are used to conduct an elasto-plastic fatigue analysis for a typical nozzle component, aiming to calculate the secondary cumulative cyclic plastic strain of the structure induced by the rapid temperature change transient. The calculation method of nonlinear ratcheting behavior under cyclic loading is studied. The method of determining the parameters of constitutive model based on cyclic stable stress-strain curve is also studied. A sensitive study of the parameters for the same constitutive law is presented, including the results of cumulative plastic strain. The ratcheting behavior simulation calculated by different constitutive models are compared. The results show that the A-F model has a conservative prediction of ratcheting behavior as the dynamic recovery term is too strong. It was found that the Chaboche constitutive model is the better methodology for ratcheting analysis. In order to evaluate the bearing ability of the section, the membrane strain and bending strain is obtained by linearizing the node strain along the cross section. The ratios of membrane strain and membrane plus bending strain to total strain are calculated, which is helpful to determining the limit criteria for the cumulative strain of structures.


2021 ◽  
Vol 11 (19) ◽  
pp. 9251
Author(s):  
Ning Li ◽  
Biao Ma ◽  
Hao Wang

The constitutive model is the crucial part for the finite element analyses. To study the elasto-plastic properties of unbound granular materials (UGMs) under repeated vehicular loads, an elasto-plastic constitutive model called revised spatially mobilized plane (SMP) was proposed and validated. In this study, the revised SMP model was used for the plastic strain analyses of a typical three-layer pavement structure. To make comparisons, the Mohr-Coulomb and Druck-Prager models were employed for the numerical computation. The results show that plastic tensile and compressive strains in the horizontal and vertical directions appear on the top surface of UGM using the revised SMP model, but no plastic strains are produced by the Mohr-Coulomb and Druck-Prager models. The distribution of plastic strains in the revised SMP model had a good relationship with the actual loading areas under the vehicular loading, which related to the rutting. With the Mohr-Coulomb and Druck-Prage models, a great plastic strain was produced during the first several loading cycles and hardly increased in the following loading cycles, while the plastic strain in the revised SMP model presented an obvious increasing tendency with increased loading cycles. The predicted permanent deformations of the revised SMP, Mohr-Coulomb and Druck-Prage models were 0.557 mm, 0.78 mm and 0.155 mm, respectively. Our work reveals that the Mohr-Coulomb model may over-predict and Druck-Prage model may under-predict the rutting of pavement in early loading stage and the results proved that the revised SMP model had advantages in the description of the plastic strain of UMG under repeated loads.


2010 ◽  
Vol 139-141 ◽  
pp. 921-924
Author(s):  
Jing Zhao ◽  
Wei Xia ◽  
Feng Lei Li ◽  
Zhao Yao Zhou ◽  
Zheng Qiang Tang

. An analytical model is developed for the prediction of residual stresses in burnishing. The model is simplified as a concentrated force pressing on elastic-plastic half-space using the solution to the Boussinesq-Flament problem. The treated material admits the elastic-plastic properties with hardening using a power law constitutive relation. Trial computation using Johnson-Cook model on AISI 1042 steel is presented and the results are verified with the experimental results given by Bouzid’s previous work. The residual stresses in the feed direction show the same trend with the experimental results while some differences still exist near the surface because of the concentrated normal force assumption and such stresses increase with the increase of burnishing force, decrease with the increase of depth and turn to zero beyond the plastic deformation boundary.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1393
Author(s):  
Xiaochang Duan ◽  
Hongwei Yuan ◽  
Wei Tang ◽  
Jingjing He ◽  
Xuefei Guan

This study develops a general temperature-dependent stress–strain constitutive model for polymer-bonded composite materials, allowing for the prediction of deformation behaviors under tension and compression in the testing temperature range. Laboratory testing of the material specimens in uniaxial tension and compression at multiple temperatures ranging from −40 ∘C to 75 ∘C is performed. The testing data reveal that the stress–strain response can be divided into two general regimes, namely, a short elastic part followed by the plastic part; therefore, the Ramberg–Osgood relationship is proposed to build the stress–strain constitutive model at a single temperature. By correlating the model parameters with the corresponding temperature using a response surface, a general temperature-dependent stress–strain constitutive model is established. The effectiveness and accuracy of the proposed model are validated using several independent sets of testing data and third-party data. The performance of the proposed model is compared with an existing reference model. The validation and comparison results show that the proposed model has a lower number of parameters and yields smaller relative errors. The proposed constitutive model is further implemented as a user material routine in a finite element package. A simple structural example using the developed user material is presented and its accuracy is verified.


Sign in / Sign up

Export Citation Format

Share Document