Deformation-Based Nonlinear Finite Element Analysis of Steel High Performance Concrete Structural Walls

2012 ◽  
Vol 166-169 ◽  
pp. 797-802
Author(s):  
Ma Kaize

Base on the experiment results of steel high performance reinforced concrete (SHPRC) structural walls, nonlinear finite element(FE) analysis is performed to simulate the complete process of the loading and concrete crack of SHPRC structural walls in the platform of ABAQUS. The nonlinear of material is taken into account in the models. The reliability of the finite element model is verified through the comparison of the analysis results and the experimental results. Based on the proposed model, the parametric analysis is carried out to study the effect of axial load ratio, aspect ratio, stirrup characteristic value, and steel ratio on the seismic behavior of SHPRC structural walls. It is concluded that the bearing capacity of SHPRC structural walls increase with the increase of the axial load ratio, but the deformation decreases obviously. The deformation and bearing capacity of the structural walls are improved by increasing the steel ratio. With increasing the stirrup characteristic value, the deformation of the structural walls improves significantly. The stirrup characteristic values are proposed to ensure the SHPRC structural walls for different axial load ratios meet the deformation capacity of drift ratio of 1/120,1/100 and 1/80, respectively.

2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2010 ◽  
Vol 163-167 ◽  
pp. 1540-1546
Author(s):  
Liang Bai ◽  
Tian Hua Zhou ◽  
Xing Wen Liang

The cyclic loading test of three steel high performance concrete(SHPC) structural walls was conducted and the failure pattern of the structural walls under the combined effect of axial force, bending moment, and shear force was researched. Based on the experimental results, the displacement-based deformation capacity design method was proposed for SHPC structural walls. It is obtained for the interrelated relationships among the ultimate drift ratio, the axial load ratio, the characteristic value of stirrup content and the aspect ratio. It is concluded that the increasing the characteristic value of stirrup content and limiting the axial load ratio were effective means to improve ductility. The characteristic value of stirrup content of SHPC structural walls with different ultimate drift ratio and axial load ratio were proposed and the conclusion can be referred by the design of SHPC structural walls.


2020 ◽  
Vol 24 (1) ◽  
pp. 90-106
Author(s):  
Fei Gao ◽  
Zhiqiang Tang ◽  
Shilong Mei ◽  
Biao Hu ◽  
Shitao Huang ◽  
...  

Three full-scale exterior beam–column joints with anti-seismic steel reinforcement were tested under quasi-static cyclic loading and column axial compressive loading. The test variables were column axial load ratio and joint core hoop reinforcement ratio. Experimental results, including failure mode, hysteretic curve, ductility, energy dissipation, stiffness degradation, and decoupling of deformations, were presented and analyzed. The tests revealed that the anti-seismic rebar resulted in good joint seismic performance and that column axial load ratio and joint core hoop reinforcement ratio impose limited influence of joint performance when the joint failed in beam flexural failure. The calibrated finite element models developed based on OpenSees were then used to simulate the behavior of joint specimens. Parametric studies via finite element modeling were performed to study the influence of various parameters on the performance of beam–column joints.


2013 ◽  
Vol 405-408 ◽  
pp. 1191-1195
Author(s):  
Jie Kong ◽  
Yun Zou ◽  
Zhi Wei Wan ◽  
Cheng Li

Nonlinear numerical analyses for the stress performance of SRC frame intermediate joints, side Joints and end joints are processed in this paper with the finite element software of ABAQUS. Compared with experimental results under static loading, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed under cyclic loading. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure and with the steel ratio increases, the hysteretic performance is better. But the axial-load ratio has less influence.


2013 ◽  
Vol 718-720 ◽  
pp. 1923-1927
Author(s):  
Fu Lai Qu ◽  
Gui Rong Liu ◽  
Pei Yuan Tian ◽  
Lu Yang Qi

Based on the experiment of eight reinforced concrete T-shaped columns under low cyclic load, the factors which affect bearing capacity and seismic behavior, such as limb length, axial load ratio, stirrup ratio and the arrangement of longitudinal bars, etc., are analyzed. Tests results show that the bearing capacity of the columns increases, but the ductility is decreased with an increase of axial load ratio. The bearing capacity of T-shaped column increases when the web gets longer, while its deformability and ductility decrease. Besides, increase of stirrup ratio and longitudinal bars in the end of the web also have effect on the ductility of the columns.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


2011 ◽  
Vol 368-373 ◽  
pp. 28-32
Author(s):  
Zhe Li ◽  
Shao Ji Chen ◽  
Cui Ping Zhang ◽  
Shuai Zhang

Compared with reinforced concrete shaped columns, bearing capacity and ductility of steel reinforced concrete shaped columns are significantly improved, so it is with theoretical significance and practical application of value to research. Based on the plain cross section presume, with material T-section boundary calculation unit, 15 steel reinforced concrete T-shaped columns(SRCTSC) have made nonlinear full-rang numerical analysis. It demonstrates that the most adverse curvature ductility load angle of SRCCRSC is 180°.Loading angle ( ), axial compression ratio ( ), and the ratio of spacing and diameter of longitudinal reinforcements (s/d) are the principal factors in curvature ductility of SRCTSC subjected to biaxial eccentric compression. It include 36 sets for load angle, 6 sets for axial load ratio, 3 sets for concrete strength, 3 sets for the content of steel, 2 sets for steel style, 3 sets for stirrup ratio, 3 sets for steel location, 3 sets for section size, 3 sets for stirrup diameter about SRCTSC. The ductile behavior of T-shaped, with calculating 1068 loading conditions, are investigated. It concluded that axial load ratio, load angle, and ratio of the spacing of stirrups and longitudinal reinforcement’s diameter (s/d) are most important factors.


2019 ◽  
Vol 23 (5) ◽  
pp. 969-978
Author(s):  
Jian-gang Wei ◽  
Jun Zhou ◽  
Jiang-nan Huang ◽  
Hui-hui Yuan ◽  
Qing-wei Huang

This article experimentally investigates the cyclic behavior of ultra high performance concrete–filled steel tube beam-columns. A total of eight specimens were tested. The considered parameters were the axial load ratio and steel ratio. The results showed that all ultra high performance concrete–filled steel tube beam-columns had a very good cyclic behavior without significant pinching. Increasing the axial load ratio results in the decrease of strength and ductility, but it has no obvious influence on the initial flexural stiffness. Reducing the steel ratio results in the decrease of the strength, stiffness and ductility, and energy dissipation capacity.


Author(s):  
Nan Lu ◽  
Weibin Li

This study was organized to derive simplified expressions to estimate the effective flange width for T-shaped shear walls at different loading stages. For that purpose, the variation in the effective flange width was explored by introducing dimensionless effective flange width coefficient. According to the principle of minimum potential energy, the theoretical expression of the effective flange width coefficient in the elastic stage was obtained. Furthermore, a parametric study considering the axial load ratio, height-width ratio of flange and width-thickness ratio of the flange, as well as the section aspect ratio was conducted to determine the effective flange width using verified nonlinear finite-element models. In light of the parametric analysis results, a formula model was proposed depending on the axial load ratio and height-width ratio of flange. Finally, the predictions of the proposed simplified formulas were verified with the theoretical solutions or finite element (FE) results, which indicated that the proposed formulas can accurately capture the effective flange width at the elastic, yield and limit state.


Sign in / Sign up

Export Citation Format

Share Document