Creep Prediction Model for Concrete Made of Crushed Clay Bricks as Coarse Aggregate

2012 ◽  
Vol 166-169 ◽  
pp. 994-997 ◽  
Author(s):  
Syed Ishtiaq Ahmad ◽  
Sushanta Roy

A simple design office oriented empirical model containing only two parameters has been developed to predict creep behavior of concrete made of crushed clay bricks as coarse aggregate. For this, concrete samples having three different normal compressive strengths in the range of 18.9 up to 24.0 N/mm2 are first prepared and then tested for their creep deformation. For each of the samples, a hyperbolic equation is developed from their creep-time behavior. These equations are then combined and modified according to statistical norms to finally obtain a generalized equation. Comparison of creep strain obtained from this equation with that of experimental values show that the proposed model can closely predict creep in brick aggregate made concrete.

2021 ◽  
Vol 9 (2) ◽  
pp. 118
Author(s):  
Xinqing Zhuang ◽  
Keliang Yan ◽  
Pan Gao ◽  
Yihua Liu

Anchor dragging is a major threat to the structural integrity of submarine pipelines. A mathematical model in which the mechanical model of chain and the bearing model of anchor were coupled together. Based on the associated flow rule, an incremental procedure was proposed to solve the spatial state of anchor until it reaches the ultimate embedding depth. With an indirect measurement method for the anchor trajectory, a model test system was established. The mathematical model was validated against some model tests, and the effects of two parameters were studied. It was found that both the ultimate embedding depth of a dragging anchor and the distance it takes to reach the ultimate depth increase with the shank-fluke pivot angle, but decrease as the undrained shear strength of clay increases. The proposed model is supposed to be useful for the embedding depth calculation and guiding the design of the pipeline burial depth.


2009 ◽  
Vol 283-286 ◽  
pp. 183-189 ◽  
Author(s):  
Rodrigo Perito Cardoso ◽  
A.M. Maliska ◽  
C.R. Maliska

This work presents a theoretical and experimental study of nickel deposition on iron samples at relatively high pressure using a pulsed DC glow discharge. The deposition process was conducted in conditions similar to that used for plasma sintering, using the confined anode-cathode configuration. The cathode was made from nickel commercially pure and the samples were made from interstitial free steel and sintered pure iron. The samples were characterized by mass weight gain, scanning electron microscopy and energy-dispersive X-ray microanalysis. The deposition process was mathematically modeled and the model was numerically solved using a conservative finite-volume method. The experiments demonstrated that the deposition occurs at a constant rate, with the mass flux changing linearly with the cathode voltage in the range of parameters considered. The results obtained from the diffusion model applied to the sample presented good agreement with the experimental values. Concerning the gas phase, the proposed model helped us to clarify some phenomenological aspects of the process. However, further studies, principally in the area of electrical discharges, are needed to permit a complete comprehension of this process.


A model is proposed for the ignition of quiescent multidroplet fuel mists which assumes that chemical reaction rates are infinitely fast, and that the sole criterion for successful ignition is the generation, by the spark, of an adequate concentration of fuel vapour in the ignition zone. From analysis of the relevant heat transfer and evaporation processes involved, ex­pressions are derived for the prediction of quenching distance and minimum ignition energy. Support for the model is demonstrated by a close level of agreement between theoretical predictions of minimum ignition energy and the corresponding experimental values obtained using a specially designed ignition apparatus in which ignition energies are measured for several different fuels, over wide ranges of pressure, mixture composition and mean drop size. The results show that both quenching distance and mini­mum ignition energy are strongly dependent on droplet size, and are also dependent, but to a lesser extent, on air density, equivalence ratio and fuel volatility. An expression is derived to indicate the range of drop sizes over which the proposed model is valid.


Processes ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 230 ◽  
Author(s):  
Lei Wang ◽  
Mengting Wang ◽  
Mingming Guo ◽  
Xingqian Ye ◽  
Tian Ding ◽  
...  

Understanding the hydration behavior of cereals during cooking is industrially important in order to optimize processing conditions. In this study, barley porridge was cooked in a sealed tin can at 100, 115, and 121 °C, respectively, and changes in water uptake and hygroscopic swelling in dehulled barley grains were measured during the cooking of canned porridge. In order to describe and better understand the hydration behaviors of barley grains during the cooking process, a three-dimensional (3D) numerical model was developed and validated. The proposed model was found to be adequate for representing the moisture absorption characteristics with a mean relative deviation modulus (P) ranging from 4.325% to 5.058%. The analysis of the 3D simulation of hygroscopic swelling was satisfactory for describing the expansion in the geometry of barley. Given that the model represented the experimental values adequately, it can be applied to the simulation and design of cooking processes of cereals grains, allowing for saving in both time and costs.


2017 ◽  
Vol 263 ◽  
pp. 59-66
Author(s):  
Peng Zhou ◽  
Qing Xian Ma

A new model to predict the structure evolution of 30Cr2Ni4MoV steel is proposed based on the dislocation density in this research. Hot compression of 30Cr2Ni4MoV steel is carried out on Gleeble 1500 at different temperatures from 1233 K to 1473 K with a strain rate of 0.01 s-1 and the deformed samples are immediately quenched by water to frozen the austenite structure. The recrystallization kinetics model of 30Cr2Ni4MoV steel is successfully established by inverse analysis of the flow curve based on the relation between flow stress and dislocation density. In order to validate the proposed model, comparison between the predicted values and experimental values obtained by metallographic analysis is implemented. It is shown that the predicted results agree with the experimental results well.


2022 ◽  
Vol 9 ◽  
Author(s):  
Han Gao ◽  
Rui Guo ◽  
Yang Jin ◽  
Litan Yan

Let SH be a sub-fractional Brownian motion with index 12<H<1. In this paper, we consider the linear self-interacting diffusion driven by SH, which is the solution to the equationdXtH=dStH−θ(∫0tXtH−XsHds)dt+νdt,X0H=0,where θ &lt; 0 and ν∈R are two parameters. Such process XH is called self-repelling and it is an analogue of the linear self-attracting diffusion [Cranston and Le Jan, Math. Ann. 303 (1995), 87–93]. Our main aim is to study the large time behaviors. We show the solution XH diverges to infinity, as t tends to infinity, and obtain the speed at which the process XH diverges to infinity as t tends to infinity.


2020 ◽  
Vol 53 (4) ◽  
pp. 655-660 ◽  
Author(s):  
Hadi Farhadian ◽  
Arash Nikvar-Hassani

The characterization of squeezing phenomena as a geological hazard is of great importance because squeezing has a crucial role in the selection of the route and type of tunnels and in the characteristics of the excavation device. Tunnel squeezing is also the basis for the designation and construction of tunnelling-related structures. We present a new tunnel squeezing classification tool to predict tunnel squeezing based on two parameters: Q, the tunnelling quality index; and H, the depth of the tunnel. We used data collected from published papers to train the model; these data included 225 case histories from different countries, including Andorra, India, Iran, Japan, Nepal, Spain, Turkey and Venezuela. Validation of the model indicated that our tunnel squeezing classification tool is more accurate than the speculative and analytical methods currently in use. The proposed model will help tunnelling experts to classify tunnelling media from the point of view of squeezing hazards.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lihua Zhu ◽  
Zengmei Zhu

The application of recycled clay brick can not only solve the disposal problem of demolished solid waste but also reduce ecological environment damage caused by the excessive development of resources. Clay brick powder (CBP) exhibits pozzolanic activity and can be used as cement replacement. Recycled clay brick aggregate (RBA) can be used to substitute natural coarse aggregate. Recycled clay brick aggregate concrete (RBAC) can attain suitable strength and be used in the production of medium- and low-strength concrete. Clay brick waste as potential partial cement and aggregate replacement material is reviewed herein. Performances in terms of mechanical and durability-related properties of mortar and concrete are discussed. Understanding the properties of clay bricks is crucial to further research and applications.


Author(s):  
Nouhayla Hafidi ◽  
Abdellah El Barkany ◽  
Morad Mahmoudi

This article addresses the problem of the joint policy of production and maintenance under constraint of outsourcing. The production system considered brings together two companies; the principal represented by a machine Md, while the subcontractor represented by a machine Ms. Our production system aims to satisfy a constant and continuous demand for a single product type. Indeed, outsourcing is justified by the lack of production capacity. However, the main objective is to determine simultaneously for each period, the age of preventive maintenance, the optimal stock threshold level, the maximum capacity of subcontractor and its unit cost of production, to better satisfy the customer's need. The last two parameters encourage an optimal choice of subcontractor, while minimizing the total cost generated by the contractor, including the costs of maintenance, production, storage and shortage. The results show that the proposed model performs quite well and opens new research direction for future improvements.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Norman Jones ◽  
R. S. Birch ◽  
R. Duan

This article studies the perforation of mild steel square and rectangular plates struck normally by cylindrical projectiles having blunt, hemispherical, and conical impact faces. Experimental results are obtained in a drop hammer rig for the perforation of 4mm and 8mm thick plates struck by relatively heavy projectiles weighing between 11.9kg and 200kg and traveling at an initial velocity up to about 13m∕s. The plates were struck at the center and at several positions near the fully clamped supports. The effect of the aspect ratio on the perforation energies of rectangular plates is examined, and comparisons are made with the perforation behavior of fully clamped circular plates. The predictions of several empirical equations are compared with the corresponding experimental values of the perforation energies. Simple design equations are also presented for predicting the maximum permanent transverse displacements of square plates prior to any cracking or perforation.


Sign in / Sign up

Export Citation Format

Share Document