Finite Element Simulation of RC Beams and Columns

2012 ◽  
Vol 170-173 ◽  
pp. 3529-3532
Author(s):  
Hai Tao Wan ◽  
Chao Yan

Reinforced concrete (RC) frame structure is one type of building structure which is widely used in China. Damage of some reinforced concrete frame structures under the earthquake is caused by the damage of beams and columns, so beams and columns are essential seismic members. However, the test datum are not enough to study the performance of RC beams and columns , Therefore, Finite element simulation of RC beams and columns is performed by software ABAQUS in the paper. Through comparing with the finite element simulation and the test of load - displacement skeleton curve, failure mode and steel bar strain, the result shows that the finite element simulation can more accurately simulate the situation of the test and verifies the finite element simulation is the most important research tool besides test.

2011 ◽  
Vol 255-260 ◽  
pp. 2421-2425
Author(s):  
Qiu Wei Wang ◽  
Qing Xuan Shi ◽  
Liu Jiu Tang

The randomness and uncertainty of seismic demand and structural capacity are considered in demand-capacity factor method (DCFM) which could give confidence level of different performance objectives. Evaluation steps of investigating seismic performance of steel reinforced concrete structures with DCFM are put forward, and factors in calculation formula are modified based on stress characteristics of SRC structures. A regular steel reinforced concrete frame structure is analyzed and the reliability level satisfying four seismic fortification targets are calculated. The evaluation results of static and dynamic nonlinear analysis are compared which indicates that the SRC frame has better seismic performance and incremental dynamic analysis could reflect more dynamic characteristics of structures than pushover method.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1226-1229
Author(s):  
Yong Sheng Zhang ◽  
Yan Ying Li

Basing on the finite element analysis software, the emergence of crack under the effect of gradual changed temperature load and the change of stress which are in the condition of super reinforced concrete frame structure are analyzed from the linear and nonlinear numeral simulation. The simulation shows that the structure component under the normal condition is cracked and turn into the nonlinear condition and the steel bars still works under the elastic stage. Meanwhile the actual stage which is reflected by the elastic-plastic analysis of the internal force and deformation is compared by the results which are obtained by the actual project observed results and the calculation of the simplified model. So the distribution of the stress which is caused by the structure temperature reduction is greatly evaluated by the usage of the cracking model which is nonlinear finite element and also plays an important role in the engineering project and practice.


2012 ◽  
Vol 594-597 ◽  
pp. 1680-1683
Author(s):  
Hai Tao Wan ◽  
Yu Qing Yuan

Reinforced concrete ( RC) frame structure is one type of building structure which is widely used in China. Damage of some reinforced concrete frame structures under the earthquake is caused by the damage of RC beams, So RC beams are an essential seismic members. The paper introduces the design of RC beam specimen, mechanical properties of materials, production of RC beam specimen, test method, loading device, loading system, the contents of measurement and data acquisition in detail. From the above analysis, it is obvious that the test is the most effective means of studying the seismic performance of beam.


2011 ◽  
Vol 368-373 ◽  
pp. 967-970
Author(s):  
Hai Tao Wan ◽  
Hua Yuan

The software ABAQUS is used to perform the finite element simulation of a group of reinforced concrete beam tests. The load-displacement skeleton curves of the beams are obtained after the completion of the simulation. Test results and simulation results are compared, results showed that the finite element simulation can be more accurately simulate the test situation. Then, the software ABAQUS is also used to simulate different types of reinforced concrete frame beams, and access to load-displacement skeleton curves and moment – rotation curves of the beams. Reference to the advanced performance-based design method, the curve classified according to different factors. The performance parameters of beams are obtained from the curves. Performance parameters can provide quantitative reference index for performance evaluation of beam.


2010 ◽  
Vol 163-167 ◽  
pp. 4301-4308
Author(s):  
Min Sheng Guan ◽  
Da Jian Han ◽  
Hong Biao Du ◽  
Xin Wang

Earthquake input energy and structural energy dissipation are key indicators to assess the seismic performance of structures. To study the rules of distribution of hysteretic energy within structures, a 6-storey regular reinforced concrete frame structure model is analyzed through elasto-plastic time-history dynamic analysis using the El Centro and Northridge accelerograms. Based on the comparison between numerical results for the earthquake input energy and structural hysteretic energy under the minor, moderate and major earthquakes of Grade 8 and 9, the distribution of the ratio of the storey hysteretic energy to the total hysteretic energy through the height was further studied. It shows that the computed results corresponding to the two earthquake records are in good agreement under different ground motion severity. And the percentage of structural hysteretic energy to input energy is basically stable. The distribution pattern of storey hysteretic energy through the height is that the value of the upper stories is smaller than the value of the lower stories. And the ground motion severity has a minor influence on the distribution pattern when the plasticity of structure develops more sufficiently.


2013 ◽  
Vol 339 ◽  
pp. 632-634
Author(s):  
Fang Zhang

It used lead core type laminated rubber pad as a base isolation device. Using the ANSYS software, it analyzed the modality of a multilayer concave-convex irregular reinforced concrete frame structures before and after seismic isolation. Comparison of the cycle, frequency and modal participation mass coefficient of the multilayer concave-convex irregular reinforced concrete frame structure before and after isolation in Kobe wave. It concluded that the lead laminated rubber bearings for multilayer concave-convex irregular reinforced concrete frame structures have seismic isolation effect.


2012 ◽  
Vol 446-449 ◽  
pp. 695-698
Author(s):  
Jian Qiang Han ◽  
Xiu Yan Fu ◽  
Jiang Ming Tang

This thesis studies deeply the crack development characteristics, failure pattern, hysteresis curve and the displacement ductility of unbonded precast reinforced concrete frame, by analyzing one unbonded precast reinforced concrete frame under low reversed cyclic load test. We build a model using finite element analysis software to the test piece model analysis, the analysis result agree well with the experimental results. So we build finite element analysis models with different design parameters to analysis the impaction for seismic performance. Numerical analysis results can provide a scientific reference for the unbonded precast frame structure design.


Sign in / Sign up

Export Citation Format

Share Document