Synthesis and Characterization of Bi2Al4O9 Powders

2012 ◽  
Vol 624 ◽  
pp. 34-37
Author(s):  
Xiao Yan Zhang ◽  
Wen Shu Hu ◽  
Xi Wei Qi ◽  
Gui Fang Sun ◽  
Jian Quan Qi ◽  
...  

Bi2Al4O9 powders were prepared by sol-gel process. The precursors were heated at 500-800°C for 2h to obtain Bi2Al4O9 powder and X-ray diffraction (XRD), Differential thermal analysis (DTA), thermogravimetric analysis (TG), field emission scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR) techniques were used to characterize precursor and derived oxide powders. XRD analysis show that the powder is still amorphous after calcined at 500°C. The peaks of Bi2Al4O9 become sharp after calcined at 575°C though still existing some amorphous phase. After calcining at 675-800°C, the powder has fully turned into pure Bi2Al4O9 phase. The crystallization process can also be confirmed by DTA-TG and IR. Calcining the precursor at 575°C, the absorption bands at 527 cm-1, 738 cm-1, 777 cm-1, and 919 cm-1are observed, which are assigned to Bi2Al4O9 and becoming stronger and sharper with the increase of temperature.

2017 ◽  
Vol 748 ◽  
pp. 413-417
Author(s):  
Chun Yu Long ◽  
Fang Fang Peng ◽  
Min Min Jin ◽  
Pei Song Tang ◽  
Hai Feng Chen

Using Pr (NO3)3, butyl titanate, ethylene glycol and citric acid as main raw materials, praseodymium titanate (Pr2Ti2O7) was prepared by the sol-gel process. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscope (SEM), thermal gravity-differential thermal analysis (TG-DTA), diffuse-reflection spectra (DRS) and Fourier transform infrared (FT-IR). The effect of different calcination temperature and illumination time on the photocatalytic properties of Pr2Ti2O7 was investigated. It was found that the single phase Pr2Ti2O7 could be obtained through sol-gel process and calcination at 1000 °C. The Pr2Ti2O7 samples calcination at 1000 °C were uniform , and the resulting product had a particle size of 200 nm and an optical band gap of 3.26 eV. Under ultraviolet light, the degradation of methyl orange arrived to 80.11% after 180 min of photocatalytic reaction. The Pr2Ti2O7 samples showed good photocatalytic activity for decomposition of methyl orange.


2012 ◽  
Vol 217-219 ◽  
pp. 733-736
Author(s):  
Xiu Mei Han ◽  
Shu Ai Hao ◽  
Ying Ling Wang ◽  
Gui Fang Sun ◽  
Xi Wei Qi

Zn2SiO4:Eu3+, Dy3+ phosphors have been prepared through the sol-gel process. X-ray diffraction (XRD), thermogravimetric and ddifferential thermal analysis (TG-DTA), FT-IR spectra and photoluminescence spectra were used to characterize the resulting phosphors. The results of XRD indicated that the phosphors crystallized completely at 1000oC. In Zn2SiO4:Eu3+,Dy3+ phosphors, the Eu3+ and Dy3+ show their characteristic red(613nm, 5D0-7F2), blue (481nm, 4F9/2–6H15/2) and yellow (577nm, 4F9/2–6H13/2) emissions.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 601
Author(s):  
Yahua Hu ◽  
Mu Gu ◽  
Xiaolin Liu ◽  
Juannan Zhang ◽  
Shiming Huang ◽  
...  

Uniform Lu2O3:Eu3+ nanowire arrays were successfully prepared by the sol-gel process using anodic aluminum oxide (AAO) templates. The as-synthesized nanowires are homogeneous, highly ordered, and dense and have a uniform diameter of ~300 nm defined by the AAO templates. The X-ray diffraction and selected area electron diffraction results show that the Lu2O3:Eu3+ nanowires have a polycrystalline cubic structure, and the crystallite size of the Lu2O3:Eu3+ nanowires is confined by the AAO template. The nanowires within the AAO template showed good photoluminescence and X-ray-excited optical luminescence performances for Lu2O3:Eu3+. The emission peaks were attributed to the 5D0 → 7FJ transitions of Eu3+ (J = 0, 1, 2, 3).


1997 ◽  
Vol 12 (3) ◽  
pp. 596-599 ◽  
Author(s):  
Ji Zhou ◽  
Qing-Xin Su ◽  
K. M. Moulding ◽  
D. J. Barber

Ba(Mg1/3Ta2/3)O3 thin films were prepared by a sol-gel process involving the reaction of barium isopropoxide, tantalum ethoxide, and magnesium acetate in 2-methoxyethanol and subsequently hydrolysis, spin-coating, and heat treatment. Transmission electron microscopy, x-ray diffraction, and Raman spectroscopy were used for the characterization of the thin films. It was shown that the thin films tend to crystallize with small grains sized below 100 nm. Crystalline phase with cubic (disordered) perovskite structure was formed in the samples annealed at a very low temperature (below 500 °C), and well-crystallized thin films were obtained at 700 °C. Although disordered perovskite is dominant in the thin films annealed below 1000 °C, a low volume fraction of 1 : 2 ordering domains was found in the samples and grows with an increase of annealing temperature.


Author(s):  
Trinh Thi Loan ◽  
Nguyen Ngoc Long

The SnO2:Ni2+ powders with dopant contents ranging from 0.0 to 12 mol% have been synthesized by sol-gel method. The samples were characterized by X-ray diffraction (XRD) Raman spectroscopy, energy-dispersive X-ray spectrometer (EDS) and photoluminescense (PL) spectra. XRD analysis showed that samples doped with low Ni- concentrations exhibited single SnO2 crystalline phase, whereas the samples with high Ni- concentrations exhibited a mixture of SnO2 and NiO phases. The lattice parameters of the SnO2 host were independent on Ni2+ dopant content, while Raman mode positions were dependenton Ni2+ dopant content. The PL spectrum of the undoped SnO2 was characterized by the emission peaks due to near band edge (NBE) emission and the violet emission peaks associated with surface dangling bonds or oxygen vacancies and Sn interstitials.


2008 ◽  
Vol 47-50 ◽  
pp. 1063-1066 ◽  
Author(s):  
Costel Birsan ◽  
Cristina Ghitulica ◽  
Ecaterina Andronescu ◽  
Cristina Ionita ◽  
Mihaela Birsan

The aim of the study was the synthesis and characterization of bioactive osteoinductive glasses, in the SiO2 – CaO – P2O5 system. In order to maintain the bioactive character of bioglasses, for SiO2 contents higher than 60%, the sol – gel method was used for preparation. On the obtained powders, thermal, grain size and X - ray diffraction analysis were performed. The X - ray diffraction emphasized the formation of phosphate phases, whose proportion decreases as the silica content is increased. Later, the powders were thermally treated at temperatures between 1000 and 14000C, the phase composition evolution being monitored through XRD analysis. On the powder suspensions in physiological serum, the evolution of pH was investigated, in order to establish the chemical stability. The behavior of the obtained powders in physiological medium was studied, by immersing samples in simulated body fluid and excerpted after different periods of time.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. K. Bordbar ◽  
A. A. Rastegari ◽  
R. Amiri ◽  
E. Ranjbakhsh ◽  
M. Abbasi ◽  
...  

Magnetite Fe3O4 nanoparticles (NPs) were prepared by chemical coprecipitation method. Silica-coated magnetite NPs were prepared by sol-gel reaction, subsequently coated with 3-aminopropyltriethoxysilane (APTES) via silanization reaction, and then were activated with 2,4,6-trichloro-1,3,5-triazine (TCT) and covalently immobilized with bovine serum albumin (BSA). The size and structure of the particles were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and dynamic light scattering (DLS) techniques. The immobilization was confirmed by Fourier transform infrared spectroscopy (FT-IR). XRD analysis showed that the binding process has not done any phase change to Fe3O4. The immobilization time for this process was 4 h and the amount of immobilized BSA for the initial value of 1.05 mg BSA was about 120 mg/gr nanoparticles. Also, the influences of three different buffer solutions and ionic strength on covalent immobilization were evaluated.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4928
Author(s):  
Andrzej Kruk

In this study, pure Y2O3, La0.1Y1.9O3 and La0.1Nd0.12Y1.78O3 nanosized powders were successfully synthesized by a modified sol–gel method. Pure and rare-earth ions doped yttria powders were characterized by X-ray diffraction, scanning electron microscopy and Brunauer–Emmett–Teller methods. The powders were sintered by the hot isostatic pressing process. The highest in-line transmittance of 56% was obtained at 800 nm and increased in the IR region. The influence of the lanthanum and neodymium ions on the physicochemical properties of yttria were discussed. The La-Nd-doped material exhibited a Verdet constant over 4000 deg/T·m at 400 nm and low thermal dependence. An interesting evolution of the Verdet constant across the absorption band with high resolution was studied. A study of the optical and magneto-optical properties of yttria doped with Nd3+ and La3+ is discussed in this paper.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 736 ◽  
Author(s):  
Aurelija Smalenskaite ◽  
Lina Pavasaryte ◽  
Thomas Yang ◽  
Aivaras Kareiva

The Mg3/Al and Mg3/Al0.99Eu0.01 layered double hydroxides (LDHs) were fabricated using a sol-gel chemistry approach and intercalated with different anions through ion exchange procedure. The influence of the origin of organic anion (oxalate, laurate, malonate, succinate, tartrate, benzoate, 1,3,5-benzentricarboxylate (BTC), 4-methylbenzoate (MB), 4-dimethylaminobenzoate (DMB) and 4-biphenylacetonate (BPhAc)) on the evolution of the chemical composition of the inorganic-organic LDHs system has been investigated. The obtained results indicated that the type and arrangement of organic guests between layers of the LDHs influence Eu3+ luminescence in the synthesized different hybrid inorganic–organic matrixes. For the characterization of synthesis products X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS), and scanning electron microscopy (SEM), were used.


2011 ◽  
Vol 233-235 ◽  
pp. 1188-1191
Author(s):  
Hong Cai ◽  
Yan Chen ◽  
Yun Ying Wu

Nano-TiO2 particles were prepared by sol-gel method, of which the surfaces were coated by SiO2. The coating was achieved by the hydrolysis of sodium silicate (Na2SiO3) in ammonium chloride (NH4Cl). The surface bonding, phase constitution and chemical components of the samples were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy (XPS). The mechanism of the SiO2 coating process onto TiO2 surface was analyzed. Results show that SiO2 particles were immobilized on the TiO2 surface via Ti—O—Si bondings, which formed at the interface. The SiO2 layer on TiO2 surface was amorphous, the photocatalytic performance was decreased of the TiO2 while its stability was enhanced after surface modification.


Sign in / Sign up

Export Citation Format

Share Document