Development and Application of Low-Speed and High-Torque Permanent Magnet Synchronous Motor

2012 ◽  
Vol 229-231 ◽  
pp. 888-894 ◽  
Author(s):  
Jun Guo Cui ◽  
Wen Sheng Xiao ◽  
Jian Bo Zhao ◽  
Jing Xi Lei ◽  
Xiao Dong Wu ◽  
...  

To meet the demands of direct-drive petroleum equipment, developed a low-speed and high-torque permanent magnet synchronous motor. By analyzing and identifying the suitable key parameters such as permanent magnet structure parameters, air gap length, type and size of Stator Slot and so on, designed permanent magnet synchronous motor with the torque 10800 Nm, the rated speed 30 r/min and high efficiency and power factor. Obtained the flux density distribution situation and characteristic curves under no-load working condition through simulation and analysis. Manufactured the low-speed and high-torque permanent magnet synchronous motor and applied it to pumping unit. Test results show that this motor has many advantages such as wide range of speed regulation, small torque ripple, smooth operation and other characteristics. The Direct-drive Pumping Unit used this permanent magnet synchronous motor can save 20% energy than the beam pumping unit, so its social and economic benefits are significant.

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 432 ◽  
Author(s):  
Caixia Gao ◽  
Mengzhen Gao ◽  
Jikai Si ◽  
Yihua Hu ◽  
Chun Gan

A direct-drive motor has the merits of low speed, high torque, and elimination of mechanical deceleration mechanisms, and is widely used in various fields. A novel direct-drive permanent magnet synchronous motor is presented herein, in which all coils are wrapped around the stator yoke in the same orientation. The structure of the novel direct-drive permanent magnet synchronous motor with toroidal windings (N-TWDDPMSM) is introduced and its operating principle is analyzed by describing the variation in the armature magnet field versus time. Furthermore, based on the same power grade and mechanical size, several finite-element models of motors with different windings are established using Magnet software to analyze the distribution of magnetic field, back-electromotive force (back-EMF), power-angle characteristics, loss characteristics, etc. Compared with the traditional permanent magnet synchronous motor (T-PMSM), the traditional permanent magnet synchronous motor with toroidal windings (T-TWPMSM), and the N-TWDDPMSM, the N-TWDDPMSM shows advantages of low speed and high torque, and the feasibility and superiority of the N-TWDDPMSM are verified.


2014 ◽  
Author(s):  
Junguo Cui ◽  
Wensheng Xiao ◽  
Hao Feng ◽  
Weibin Dong ◽  
Yanjing Zhang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 362
Author(s):  
Shuhua Fang ◽  
Songhan Xue ◽  
Zhenbao Pan ◽  
Hui Yang ◽  
Heyun Lin

This paper proposes the use of a novel cylindrical arc permanent magnet synchronous motor (CAPMSM) in a large telescope, which requires high positioning accuracy and low torque ripple. A 2D finite element method was used to analyze the cogging torque of the CAPMSM. The CAPMSM can be an alternative for a rotating motor to realize direct drive. A new method is proposed to separate the cogging torque, Tcog, into the torque, Tslot, generated by the slotted effect and the end torque, Tend, generated by the end effect. The average torque and the torque ripple are optimized considering stator center angle, the angle between two adjacent stators and the unequal thickness of a Halbach permanent magnet. The torque ripple decreased from 31.73% to 1.17%, which can satisfy the requirement of tracking accuracy for large telescopes.


2013 ◽  
Vol 340 ◽  
pp. 852-856
Author(s):  
Zi Kuan Zhang ◽  
Lin He ◽  
Li Yang

To study pumping unit of operating state in practical work, permanent magnet synchronous motor of direct torque control was used to model and simulate based on Matlab/Simulink software, and analyzed the waveforms change under normal operation and intermissive pumping. The results indicate that permanent magnet synchronous motor can operate smoothly under low speed and high torque condition, and can transit smoothly with different torque and acceleration. The proposed simulation system can achieve stable control, and its effectiveness is confirmed experimentally. Results of simulation analysis have some certain practical value for pumping unit driven by permanent magnet synchronous motor of direct torque control.


Sign in / Sign up

Export Citation Format

Share Document