An Assessment of Wet Compression Process in Gas Turbine Systems with an Analytical Modeling

2012 ◽  
Vol 234 ◽  
pp. 23-27
Author(s):  
Kyoung Hoon Kim ◽  
Dong Joo Kim ◽  
Kyoung Jin Kim ◽  
Seong Wook Hong

Recently humidified gas turbine systems in which water or steam is injected have attracted much attention, since they can offer a high efficiency and a high specific power with a relatively low cost compared to combined-cycle gas turbine systems, and therefore they have a potential for future power generation. In this study, performance analysis of the wet compression process is carried out with an analytical modeling which was developed from heat and mass transfer, and thermodynamic analyses based on droplet evaporation. Wet compression variables such as temperature-averaged polytropic coefficient, compressor outlet temperature, and compression work are estimated. Parametric studies show the effect of system parameters such as droplet size, water injection ratio or compression ratio on transient behavior.

Author(s):  
Kyoung Hoon Kim ◽  
Horacio Perez-Blanco

Humidified gas turbines have the potential of enhanced cycle efficiencies with moderate initial cost. Evaporatively-cooled air compression is of importance to the power generation industry. The present work is aimed at contributing to a number of unanswered questions concerning the wet-compression process. Current operational margins limit the vapor mass fraction to 1∼2% by mass of the inlet flow. Yet, machines specifically designed to accommodate higher mass fractions are conceivable. Our aim is to explain the theoretical limits of those machines via a heat and mass transfer model. Continuous compression cooling via evaporation is modeled numerically based on droplet evaporation analysis. Parametric studies show the effect of variables such as droplet size, water injection ratio or compression ratio on transient behavior. Wet compression parameters such as evaporation time, compressor outlet temperature and compression work are estimated.


Author(s):  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
S. Ingistov

In the last years, among all different gas turbine inlet air cooling techniques, an increasing attention to fogging approach is dedicated. The various fogging strategies seem to be a good solution to improve gas turbine or combined cycle produced power with low initial investment cost and less installation downtime. In particular, overspray fogging and interstage injection involve two-phase flow consideration and water evaporation during compression process (also known as wet compression). According to the Author’s knowledge, the field of wet compression is not completely studied and understood. In the present paper, all the principal aspects of wet compression and in particular the influence of injected water droplet diameter and surface temperature, and their effect on gas turbine performance and on the behavior of the axial compressor (change in axial compressor performance map due to the water injection, redistribution of stage load, etc.) are analyzed by using a calculation code, named IN.FO.G.T.E. (INterstage FOgging Gas Turbine Evaluation), developed and validated by the Authors.


2017 ◽  
Vol 374 ◽  
pp. 131-147
Author(s):  
Gambo Kofar Bai Dayyabu ◽  
Hai Zhang ◽  
Qun Zheng ◽  
Salman Abdu

Wet compression process has been widely accepted as a measure of increasing the performance of industrial gas turbine, in the present work, in-depth analysis on the principle aspects of wet compression, more specifically, the influence of injected water droplets diameter, surface temperature, and their effects on the behavior of axial flow transonic compressor and gas turbine performance were analyzed using computational fluid dynamic. Injected water droplets and gas flow phase change was most intense in the area adjacent to shockwaves and were the slip velocity of the droplet is highest. Water injection in to the compressor rotor is a little perturbation to the flow field due to the formation of flow separation, evaporation rate, increasing weber number, reduction in the inlet temperature, and velocity vortex pattern relatively different from that of the dry case. The effects of water droplets on the rotor region at injection rate of 1%, shows decrease in the inlet temperature of 11%, outlet temperature 5% and uplift the efficiency to 1.5%.


Author(s):  
Erwin Zauner ◽  
Yau-Pin Chyou ◽  
Frederic Walraven ◽  
Rolf Althaus

Power generation in gas turbines is facing three main challenges today: • Low pollution prescribed by legal requirements. • High efficiency to obtain low operating cost and low CO2 emissions. • High specific power output to obtain low product and installation cost. Unfortunately, some of these requirements are contradictory: high efficiency and specific power force the development towards higher temperatures and pressures which increase NOx emissions and intensify the cooling and material strength problems. A breakthrough can be achieved by applying an energy exchanger as a topping stage. Inherent advantages are the self-cooled cell-rotor which can be exposed to much higher gas temperature than a steady-flow turbine and a very short residence time at peak temperature which keeps NOx emissions under control. The basic idea has been proposed long time ago. Fundamental research has now led to a new energy exchanger concept. Key issues include symmetric pressure-wave processes, partial suppression of flow separation and fluid mixing, as well as quick afterburning in premixed mode. The concept has been proven in a laboratory-scale engine with very promising results. The application of an energy exchanger as a topping stage onto existing gas turbines would increase the efficiency by 17% (relative) and the power by 25%. Since the temperature level in the turbine remains unchanged, the performance improvement can also be fully utilized in combined cycle applications. This process indicates great potentials for developing advanced gas turbine systems as well as for retrofitting existing ones.


Author(s):  
Maher A. El-Masri

Intercooled/Recuperated gas turbine systems provide high-efficiency and power density for naval propulsion. Current aero-derivative systems are capable of about 43% thermal efficiency in this configuration. With continued progress in gas-turbine materials and cooling technology, the possibility of further improving system performance by incorporation of gas-turbine reheat arises. A preliminary scan of this class of cycles is presented and compared with non-reheat intercooled/recuperated cycles at two levels of component technology. For conservative component technology, the reheat is found to provide very modest performance advantages. With advanced components and ceramic thermal barrier coatings, the reheat is found to offer potential for specific power improvements of up to 33% and for modest efficiency gains, on the order of one percentage point, while enabling turbine inlet temperatures well below those for the most efficient non-reheat cycles. The high-performance reheat systems, however, require reheat-combustor inlet temperatures beyond current practice. The use of water-injection in the intercooler, together with an aftercooler and a water-injected evaporative-recuperator is found to produce very large gains in efficiency as well as specific power. This modification may be feasible for land-based systems, where it can compete favourably with combined cycles. Despite the difficulty of obtaining pure water for a shipboard propulsion system, those large gains may justify further studies of this system and of means to provide its water supply in marine applications.


Author(s):  
Hai Zhang ◽  
Xiaojiang Tian ◽  
Xiaojun Pan ◽  
Jie Zhou ◽  
Qun Zheng

In process of wet compression, gas turbine engine will ingest a certain amount of water, which can influence the overall performance of the engine. This phenomenon is particularly significant in the cleaning process of industrial gas turbine and water injection of aero-engine. When the quantity of water ingestion is quite large, the performance of gas turbine will appear deterioration and may lead to flameout, power reduce or even shutdown of the engine, causing accidents. Water droplets will be accumulated on the blade surface where water films could be formed on pressure surface in the wet compression process. The effects of water film on gas turbine engines are aerodynamic, thermodynamic and mechanical. The above-mentioned effects occur simultaneously and be affected by each other. Considering the above effects and the fact that they are time dependent, there are few gas turbine performance researches, which take into account the water film phenomenon. This study is a new research of investigating theoretically the water film effects on a gas turbine performance. It focuses on the aerodynamic and thermodynamic effects of the phenomenon on the compressor stage. The computation of water film thickness, which frequently be formed on the surface of compressor blade, its movement and extra torque demand, are provided by a simulation model of the code. Considering the change in blade’s profile and the thickness feature of the water film, the compressor stage’s performance deterioration is analyzed. In addition to this, movement and the formation of the water film on a compressor stage are simulated and analyzed by using unsteady numerical methods under different water injecting conditions in this paper. The movement characteristics of water droplets in compressor passage are investigated to understand the flow mechanisms responsible for water film formation process. The forming and the tearing process of water film on blade surface are analyzed at different injection conditions. For simulating the real situation, The maximum quantity of injected water can reach 12%. The results indicate that continuity and region of the water film on the blade surface will be developed with the increment of droplet size and injection rate. It is also found that the flow losses near blade surface increases with the tearing process of water film due to the increment of surface roughness.


Author(s):  
M. Bagnoli ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto ◽  
P. R. Spina ◽  
...  

In recent years, among various available inlet air cooling techniques for gas turbine power enhancement, high pressure fogging has seen an increasing attention mainly because of its comparatively low initial investment cost and less downtime for its installation. The various fogging strategies such as inlet evaporative, overspray (or wet compression) and interstage injection have been implemented in simple and combined cycle applications. Unlike wet compression, air at the compressor inlet is not fully saturated with the interstage injection. However, both wet compression and interstage injection involve multi-phase flow and water evaporation during the compression process. The phenomenon of two phase flow compression in axial compressor is not yet fully understood. This paper investigates effects of interstage injection on the performance of a GE Frame 7EA gas turbine using aero-thermodynamic modeling. In addition to estimating the overall gas turbine performance changes achievable with the interstage injection approach, the study presented here discusses impact of interstage injection on the stage-by-stage compressor performance characteristics of the selected gas turbine. The plausible reasons for the observed performance changes are discussed.


2012 ◽  
Vol 224 ◽  
pp. 256-259
Author(s):  
Kyoung Hoon Kim ◽  
Kyoung Jin Kim ◽  
Hyung Jong Ko

When water is injected at an inlet of compressor, wet compression occurs due to evaporation of water droplets. In this work, the effects of wet compression on the performance of regenerative gas turbine cycle with turbine blade cooling are analytically investigated. For various pressure ratios and water injection ratios, the important system variables such as ratio of coolant flow for turbine blade cooling, fuel consumption, specific power and thermal efficiency are estimated. Parametric studies show that wet compression leads to significant enhancement in both specific power and thermal efficiency in gas turbine systems with turbine blade cooling.


2012 ◽  
Vol 229-231 ◽  
pp. 2541-2545
Author(s):  
Kyoung Hoon Kim ◽  
Chul Ho Han

In wet compression process water is injected at an inlet of compressor and continuous cooling occurs due to evaporation of water droplets during the compression process of air, which can save the compression work and enhance the performance of gas turbine system. In this work, performance analysis of the wet compression process is carried out under the critical conditions of water injection which are defined as the maximum water injection which can be evaporated completely inside the compressor. For various ambient conditions the important variables of wet compression process such as water injection ratio, temperature-averaged polytropic coefficient, compressor outlet temperature, and compression work are estimated under the critical injection conditions. Parametric studies show that compression work decreases with ambient temperature, however, the reduction ratio of compression work relative to dry increases with ambient temperature.


Author(s):  
Rakesh K. Bhargava ◽  
Michele Bianchi ◽  
Francesco Melino ◽  
Antonio Peretto ◽  
Pier Ruggero Spina

In recent years, a great number of studies were carried out in order to analyze the main features of fogging technologies. The various fogging strategies seem to improve gas turbine and combined cycle power output with low initial investment cost and less installation downtime. In fact, nowadays fogging is successfully installed on several gasturbine and combined cycle power plants worldwide. In particular, overspray fogging and interstage injection involve two-phase flow consideration and water evaporation during compression process (also known as wet compression). The aim of the present paper is to further improve understanding of the wet compression process including stage-by-stage compressor behavior by investigating the influence of the axial compressor performance map shape on the evaporation process of the injected water through the compressor, achievable power boost, the maximum amount of water which can be injected and/or influence on the surge conditions. This analysis is carried out by using a calculation code, named IN.FO.G.T.E. (INterstage FOgging Gas Turbine Evaluation), developed and validated by the Authors.


Sign in / Sign up

Export Citation Format

Share Document