Automatic Integration of System-Level Design and System Optimization Based on SysML

2012 ◽  
Vol 249-250 ◽  
pp. 1154-1159
Author(s):  
Yu Sheng Liu ◽  
Wen Qiang Yuan

Model based systems engineering (MBSE) is becoming a promising approach for the system-level design of complex mechatronics. And several MBSE tools are developed to conduct system modeling. However, the system design cannot be optimized in current MBSE tools. In this study, an approach is presented to conduct the task. A set of optimization stereotype is defined at first which is used to formalize the optimization model based on the system design model. Then the design parameters and their relationships applied optimization stereotypes are extracted and transferred to construct the tool-dependent optimization model. Finally, the optimization model is solved and the results are given back and then modify the corresponding system model automatically. In this paper, MagicDraw is used to model the whole system whereas Matlab optimizer is used for optimization. The combustion engine is chosen as the example to illustrate the proposed approach.

Author(s):  
Trevor Bailey ◽  
Suzanne Woll ◽  
Rajul Misra ◽  
Kevin Otto

This paper presents a model-based systems engineering methodology that can be applied to perform a root cause analysis on transient systems. The methodology extends existing root cause analysis best practice by incorporating system modeling and analysis techniques. The methodology is deployed through a detailed 5-step process to understand, identify, assess, FMEA, and validate potential transient system-level root causes. A transient performance reliability analysis for a dual mode refrigeration system is used to demonstrate how the methodology can be applied. The paper also describes a set of success factors for applying the methodology using a phased approach with a large cross-functional team.


Author(s):  
Sam Ryu ◽  
Arun S. Duggal ◽  
Caspar N. Heyl ◽  
Zong Woo Geem

A mooring system optimization program has been developed to minimize the cost of offshore mooring systems. The paper describes an application of the optimization program constructed based on recently developed harmony search optimization algorithm to offshore mooring design which requires significant number of design cycles. The objective of the anchor leg system design is to minimize the mooring cost with feasible solutions that satisfy all the design constraints. The harmony search algorithm is adopted from a jazz improvisation process to find solutions with the optimal cost. This mooring optimization model was integrated with a frequency-domain global motion analysis program to assess both cost and design constraints of the mooring system. As a case study, a single point mooring system design of an FPSO in deepwater was considered. It was found that optimized design parameters obtained by the harmony search model were feasible solutions with the optimized cost. The results show that the harmony search based mooring optimization model can be used to find feasible mooring systems of offshore platforms with the optimal cost.


Author(s):  
Sam Ryu ◽  
Arun S. Duggal ◽  
Caspar N. Heyl ◽  
Zong Woo Geem

A mooring system optimization program has been developed to minimize the cost of offshore mooring systems. This paper describes an application of the optimization program constructed based on the recently developed harmony search (HS) optimization algorithm to offshore mooring design which requires significant number of design cycles. The objective of the anchor leg system design is to minimize the mooring cost with feasible solutions that satisfy all the design constraints. The HS algorithm is adopted from a jazz improvisation process to find solutions with the optimal cost. This mooring optimization model was integrated with a frequency-domain global motion analysis program to assess both cost and design constraints of the mooring system. As a case study, a single-point mooring system design of floating production storage and offloading (FPSO) in deepwater was considered. It was found that optimized design parameters obtained by the HS model were feasible solutions with the optimized cost. The results show that the HS-based mooring optimization model can be used to find feasible mooring systems of offshore platforms with the optimal cost.


Author(s):  
Nathan Zimmerman ◽  
Kellen Carey ◽  
Cristinel Ababei

The main contribution of this paper is to introduce a computationally efficient iterative closest line (ICL) algorithm for determining indoor position drift of a quadcopter using minimal lidar data. In addition, we present the system-level design and implementation of a new quadcopter both as hardware and flight control algorithms. Such a platform allows us to develop and experiment new control and system optimization techniques. As an example, we discuss how the proposed ICL algorithm is used for position hold and control purposes by plugging it into the low level implementation of the flight control algorithm of the quadcopter. For testing and validation we use simulations with real world data. As part of the system-level design aspects, we present an investigation of the quadcopter power consumption. We are interested in power consumption because it is the major factor that determines the flight time of a typical quadcopter. We believe that this work is a contribution toward achieving better quadcopter design and control for indoor autonomous navigation.


Author(s):  
Bo Yang Yu ◽  
Tomonori Honda ◽  
Syed M. Zubair ◽  
Mostafa H. Sharqawy ◽  
Maria C. Yang

AbstractMaintenance plays a critical role in reducing operating cost and maximizing reliability of a complex engineering system. This paper proposes a novel maintenance-focused, system-level design framework that attempts to capture the interactions between maintenance strategies and system-level design parameters overlooked in current modeling approaches. The goal of this maintenance-focused approach is to help designers better understand the interconnectedness of system architecture, choice of maintenance strategy, and uncertainties in a design. Application of the proposed design framework is demonstrated through a case example of a power plant condenser system. Results show that using an integrated approach can reveal the many nonobvious interactions between subsystems, and produce system designs that have lower life-cycle cost compared to traditional sequential design approaches.


Author(s):  
K. J. Kattke ◽  
R. J. Braun

Effective thermal management is critical to the successful design of small (<10 kW) solid oxide fuel cell (SOFC) power systems. While separate unit processes occur within each component of the system, external heat transport from/to components must be optimally managed and taken into account in system-level design. In this paper, we present a modeling approach that captures thermal interactions among hot zone components and couples this information with system process design. The resulting thermal model is then applied to a mobile SOFC power system concept in the 1–2 kW range to enable a better understanding of how component heat loss affects process gas temperature and flow requirements throughout the flowsheet. The thermal performance of the system is examined for various thermal management strategies that involve altering the convective and radiative heat transfer in the enclosure. The impact of these measures on internal temperature distributions within the cell-stack is also presented. A comparison with the results from traditional adiabatic, zero-dimensional thermodynamic system modeling reveals that oxidant flow requirements can be overpredicted by as much as 204%, resulting in oversizing of recuperator heat duty by 221%, and that important design constraints, such as the magnitude of the maximum cell temperature gradient within the stack, are underpredicted by over 24%.


Author(s):  
K. J. Kattke ◽  
R. J. Braun

Effective thermal management is critical to the successful design of small (&lt;10 kW) solid oxide fuel cell (SOFC) power systems. While separate unit processes occur within each component of the system, external heat transport from or to components must be optimally managed and taken into account in system-level design. In this paper, we present a modeling approach that captures thermal interactions among hot zone components and couples this information with system process design. The resulting thermal model is then applied to a mobile SOFC power system concept in the 1–2 kW range to enable a better understanding of how component heat loss affects process gas temperature and flow requirements throughout the flowsheet. The thermal performance of the system is examined for various thermal management strategies that involve altering the convective and radiative heat transfer in the enclosure. The impact of these measures on internal temperature distributions within the cell-stack is also presented. A comparison with results from traditional adiabatic, zero-dimensional thermodynamic system modeling reveals that oxidant flow requirements can be over-predicted by as much as 110% and that important design constraints, such as the magnitude of the maximum cell temperature gradient within the stack, are under-predicted by over 40%.


Sign in / Sign up

Export Citation Format

Share Document