Distribution Rule Analysis and Research of Wind Loads of Stadium by Numerical Simulation

2012 ◽  
Vol 256-259 ◽  
pp. 826-830
Author(s):  
Zhi Xiang Yin ◽  
Shuang Zhang

The most of Long-span stadium roofs are complex surface, the load norms cannot put forward the design requirements clearly in frequently. Determine wind loads need to use other means for help, while the numerical wind tunnel is one of the commonly be used to research methods in recent years. This paper introduces about the numerical simulation method of a long-span stadium roof surface wind pressure distribution , and based on FLUENT platform, a gymnasium as an example, the shear stress transport k - ω model (referred to as the SST k - ω model) on the roof surface wind pressure distribution of numerical wind tunnel simulation, analysis stadium roof surface pressure distribution law based on different wind directions.

2012 ◽  
Vol 226-228 ◽  
pp. 1260-1264
Author(s):  
Xi Meng ◽  
Ri Gao ◽  
Hai Jun Zhang

In order to determine the distribution of wind load on the roof, wind tunnel test and numerical simulation are both carried out. Then the distribution of mean wind pressure under different wind directions is obtained and the features of mean wind pressure are also analyzed. The datas show that wind pressure distribution of the roof is predominantly negative pressure; only a small area of windward side is positive pressure distribution. The peak of negative pressure appears at the roof ridge or windward long eaves, and varies as changes of wind direction. Meanwhile, the comparison between the results of the numerical simulation and wind tunnel test shows that the distribution law of both is almost the same, but in some areas that flow separation is serious, the error is larger. Then the reasons for the error are discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


Author(s):  
Astha Verma ◽  
Ashok Kumar Ahuja

Wind is one of the important loads to be considered while designing the roofs of low-rise buildings. The structural designers refer to relevant code of practices of various countries dealing with wind loads while designing building roofs. However, available information regarding wind pressure coefficients on cylindrical roofs is limited to single span only. Information about wind pressure coefficients on multi-span cylindrical roofs is not available in standards on wind loads. Present paper describes the details of the experimental study carried out on the models of low-rise buildings with multi-span cylindrical roofs in an open circuit boundary layer wind tunnel. Wind pressure values are measured at many pressure points made on roof surface of the rigid models under varying wind incidence angles. Two cases namely, single-span and two-span are considered. The experimental results are presented in the form of contours of mean wind pressure coefficients. Results presented in the paper are of great use for the structural designers while designing buildings with cylindrical roofs. These values can also be used by the experts responsible for revising wind loading codes from time to time.


2013 ◽  
Vol 353-356 ◽  
pp. 3545-3548
Author(s):  
Peng Zhao ◽  
Heng Dong ◽  
Jian Sui

This paper mainly studies the distribution characteristics of surface wind pressure on low-rise buildings. Based on the theory of fluid dynamics, this study uses CFD software Fluent 6.3.26 to conduct numerical simulation of the models in wind tunnel tests by Yong Chul Kim involving four working conditions of different spacing or area density in regular arrangement. Compared with data of wind tunnel tests, the results show that different spacing or area density has significant influence on surface wind pressure of low-rise buildings and surrounding buildings have shielding effect over target buildings.


2018 ◽  
Vol 1 (1) ◽  
pp. 22
Author(s):  
Zhongcheng Wang ◽  
Yunpeng Ma

The analysis of wind load characteristics of gas-ribbed film structure plays an important role in the performance of the long-span membrane structure. This paper mainly researches on the long-span rib membrane structure. Surface wind pressure of the membrane structure is calculated by fluent, the distribution of force and surface pressure of the membrane structure under different angles and wind speeds is obtained. The worst working condition of the wind approach angle is 60°. Maximum force angle is positively correlated with windward angle and the length of structure. 


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Bin Rong ◽  
Shuhao Yin ◽  
Quankui Wang ◽  
Yanhong Yang ◽  
Jian Qiu ◽  
...  

This article carries out a numerical simulation of a landslide-type long-span roof structure, Harbin Wanda Cultural Industry Complex. The maximum span of the landslide-type roof is 150 m and the minimum span is 90 m, with a minimum height of 40 m and a maximum height of 120 m, and the roof area is divided into three different parts. The large eddy simulation (LES) method is used to simulate and record the wind pressure coefficient of the roof. The distribution law and cause of the mean wind pressure coefficient of the roof are firstly analyzed, and the comparison with the existing wind tunnel test data proves the validity of the numerical simulation. Secondly, a qualitative analysis is made on the distribution of root mean square (RMS) fluctuating coefficients. Subsequently, the non-Gaussian characteristics of the roof are briefly discussed, and the peak factor distribution is calculated. Finally, based on the total wind pressure coefficient, a simple evaluation method for judging favorable and unfavorable wind direction angles is proposed, and only the shape of the roof and wind angle need to be known.


2010 ◽  
Vol 163-167 ◽  
pp. 3943-3946
Author(s):  
Ying Zhou ◽  
Qi Lin Zhang

This paper presents the results of full-scale numerical wind tunnel tests of wind pressure on structure roofs with suspension solar panels. Solar roof project is popularized in this century. Solar panels are suspended above the structure roof. So the wind load effect on the structure roof is varied. The wind tunnel experiments are often expensive. A 3D model is introduced and solved using ADINA. The wind pressure distribution coefficients are calculated.


2013 ◽  
Vol 639-640 ◽  
pp. 485-488 ◽  
Author(s):  
Yao Xiong

One of the critical loads in engineering design is wind load, especially for high-rise structure or multi-story structure. In order to forecast the distribution of wind effects on structure, how to accurately predict the building surface wind pressure distribution is very important. Using the wind tunnel model test and numerical simulation calculation methods, the surface wind load on the mega-frame structure were comparatively analyzed and researched in this paper. The results show that combined the realized к-ε model with the standard wall function will not only satisfy the mega-frame structure surface wind pressure value requirement, but also provide complete wind filed around, which could provide meaningful information for further research on wind load.


2013 ◽  
Vol 639-640 ◽  
pp. 523-529
Author(s):  
Fu Bin Chen ◽  
Q.S. Li

The Shenzhen New Railway Station (SNRS) has roof dimensions of 450 m long and 408 m wide. This paper presents the results of wind loads acting on the large-span roof structure. In the wind tunnel test, wind-induced pressures including mean and fluctuating components were measured from the roof of a 1:200 scale SNRS model under suburban boundary layer wind flow configuration in a boundary layer wind tunnel of HD-2 at Hunan University. Based on the data obtained simultaneously from the wind tunnel tests, the distributions of the mean and fluctuating wind pressure coefficients and the characteristics of probability density functions of wind pressures of typical pressure taps were analyzed in detailed. The outcomes of the experimental study indicate that: (1) The maximum mean negative wind pressure coefficients on the roof occur at the windward leading edge region, where the maximum fluctuating wind pressure coefficients occur also in this region; (2) There are some differences of the maximum mean negative wind pressure coefficients and RMS wind pressure coefficients under conditions with different number of trains inside the station, but such effects on the overall pressure distributions on the whole roof are negligible; (3) There are clearly negative skewed distributions for some pressure taps at the windward leading roof edge and much longer negative tails are observed, which follow Non-Gaussian distributions. The results presented in this paper are expected to be of considerable interest and of use to researchers and professionals involved in designing complex long-span roof structures.


1987 ◽  
Vol 2 (1) ◽  
pp. 49-54
Author(s):  
A. J. Dutt

Wind pressure distribution was investigated on a multiple hyperbolic paraboloid (HP) shell roof building by model test in the wind tunnel. The roof of the model was a grouping of four similar HP shells in a ‘normal’ array forming a square in plan. Wind tunnel experiments were carried out; wind pressure distribution and the contours of wind pressure on shell roof and walls were determined for various wind directions. The average suctions on roof were computed and compared with those on a single HP shell roof and on a multiple HP shell roof having a ‘sawtooth’ array. The highest point suction encountered was −4·12 q whilst the maximum average suction on the roof was −0·61 q.


Sign in / Sign up

Export Citation Format

Share Document