Techniques and Methods of Spatial Data Fusion

2012 ◽  
Vol 263-266 ◽  
pp. 3274-3278
Author(s):  
Hui Ming Yu ◽  
Jian Zhong Guo ◽  
Yi Cheng ◽  
Qian Lou

Spatial data fusion is an important method of spatial data acquisition. The aim of multisource spatial data integration and fusion is to improve the information precision and information's utilization efficiency. Vector and raster are the two main spatial data structures. This article discusses vector data fusion from of data model fusion, semantic information fusion and coordinates unification, reviews the main methods of raster data fusion and discusses the key technologies of vector and raster data fusion, and proposes the future developments of spatial data fusion technique.

2011 ◽  
Vol 460-461 ◽  
pp. 404-408
Author(s):  
Yue Shun He ◽  
Jun Zhang ◽  
Jie He

This paper mainly analyzed the principle of multi-source spatial data fusion, and expounded the multi-source spatial data fusion of the distributed model structure. The paper considers a distributed multi-sensor information fusion system factors, A performance evaluation model was established which was suitable for distributed multi-sensor information fusion system, It can estimate the system's precision, track quality, filtering quality, and the relevant between Navigation Paths and so on. Meanwhile, we had a lot of experiments by the datum which generated by the simulation test environment, experiments show that this evaluation model is valid.


2017 ◽  
Vol 34 (1) ◽  
pp. 18-32 ◽  
Author(s):  
Pei-Ju Lee ◽  
Peng-Sheng You ◽  
Yu-Chih Huang ◽  
Yi-Chih Hsieh

Purpose The historical data usually consist of overlapping reports, and these reports may contain inconsistent data, which may return incorrect results of a query search. Moreover, users who issue the query may not learn of this inconsistency even after a data cleaning process (e.g. schema matching or data screening). The inconsistency can exist in different types of data, such as temporal or spatial data. Therefore, this paper aims to introduce an information fusion method that can detect data inconsistency in the early stages of data fusion. Design/methodology/approach This paper introduces an information fusion method for multi-robot operations, for which fusion is conducted continuously. When the environment is explored by multiple robots, the robot logs can provide more information about the number and coordination of targets or victims. The information fusion method proposed in this paper generates an underdetermined linear system of overlapping spatial reports and estimates the case values. Then, the least squares method is used for the underdetermined linear system. By using these two methods, the conflicts between reports can be detected and the values of the intervals at specific times or locations can be estimated. Findings The proposed information fusion method was tested for inconsistency detection and target projection of spatial fusion in sensor networks. The proposed approach examined the values of sensor data from simulation that robots perform search tasks. This system can be expanded to data warehouses with heterogeneous data sources to achieve completeness, robustness and conciseness. Originality/value Little research has been devoted to the linear systems for information fusion of tasks of mobile robots. The proposed information fusion method minimizes the cost of time and comparison for data fusion and also minimizes the probability of errors from incorrect results.


Author(s):  
H. Karim ◽  
A. Abdul Rahman ◽  
M. R. Mohd Salleh

Abstract. Various users and applications required different abstraction details of spatial model either in vector or/and raster data types/models. Generating different model abstraction details (e.g. Level of Detail/LOD) produces various drawbacks especially for data model sharing among stakeholders or publics. Different abstraction detail or LOD means different details in geometry, semantic information, attributes as well as different accuracy provided within the vector model (e.g. a certain LOD). On the other hand, raster dataset with different resolutions on certain information or layer (e.g. elevation, land cover, spatial imagery, soil type, thematic raster map and others) could also be considered as multi-scale raster modelling which produces similar drawbacks with additional storage redundancy/consumption and updating works. There are some solutions for vector scale modelling such as CityGML (3D) and multi-scale or vario-scale (2D) modelling induce good solutions for vector; however, there are no solution for raster data type (or model) yet. Thus, a concept description in categorizing and defining multi-scale for multi-resolution raster dataset should be introduced. This paper basically highlights the similarity of spatial 2D vector and raster type GIS dataset, some introduction and properties of raster dataset which able to be defined it as the same level of vector LoD in scale modelling. This paper basically tries to kick off a new multi-scale domain in supporting spatial raster dataset (new idea), which will be then be extend/expand by related researchers near the future. Discussion on successful implementation of vector multi-scale model will be in the paper as well as existing multi-scale approach in storing raster dataset as the main content of the paper. Some potential analysis on related multi-scale raster and validation are also discussed to give brief idea on what is spatial raster capable of; especially to those who are new/not yet engage with this multi-scale spatial raster dataset.


Author(s):  
Y. S. Huang ◽  
G. Q. Zhou ◽  
T. Yue ◽  
H. B. Yan ◽  
W. X. Zhang ◽  
...  

Abstract. Although contemporary geospatial science has made great progress, spatial data fusion of vector and raster data is still a problem in the geoinformation science environment. In order to solve the problem, this paper proposes a method which merges vector and raster data. Firstly, the row and column numbers of the raster data, and the X, Y values of the vector data are represented by Morton code in the C++ environment, respectively. Secondly, we establish the the raster data table and the vector data table in the Oracle database to store the vector data and the raster data. Third, this paper uses the minimum selection bounding box method to extract the top data of the building model. Finally, we divide the vector and raster data into four steps to obtain the fusion data table, and we call the fusion data in the database for 3D visualization. This method compresses the size of data of the original data, and simultaneously divides the data into three levels, which not only solves the problem of data duplication storage and unorganized storage, but also can realize vector data storage and the raster data storage in the same database at the same time. Thus, the fusion original orthophoto data contains the gray values of building roofs and the elevation data, which can improve the availability of vector data and the raster data in the 3D Visualization application.


Author(s):  
G. Zhou ◽  
Q. Pan ◽  
T. Yue ◽  
Q. Wang ◽  
H. Sha ◽  
...  

Even though geomatique is so developed nowadays, the integration of spatial data in vector and raster formats is still a very tricky problem in geographic information system environment. And there is still not a proper way to solve the problem. This article proposes a method to interpret vector data and raster data. In this paper, we saved the image data and building vector data of Guilin University of Technology to Oracle database. Then we use ADO interface to connect database to Visual C++ and convert row and column numbers of raster data and X Y of vector data to Morton code in Visual C++ environment. This method stores vector and raster data to Oracle Database and uses Morton code instead of row and column and X Y to mark the position information of vector and raster data. Using Morton code to mark geographic information enables storage of data make full use of storage space, simultaneous analysis of vector and raster data more efficient and visualization of vector and raster more intuitive. This method is very helpful for some situations that need to analyse or display vector data and raster data at the same time.


2013 ◽  
Vol 32 (2) ◽  
pp. 581-584
Author(s):  
Shu-min XIONG ◽  
Li-guan WANG ◽  
Zhong-qiang CHEN ◽  
Jian-hong CHEN

2012 ◽  
Vol 209-211 ◽  
pp. 252-255
Author(s):  
Li Guo ◽  
Hai Ying Zheng ◽  
Yong Hong Wang ◽  
Bin Zhang

Data matching technology is a key technology for spatial data integration and fusion. This paper represents a solution to the complex polygon area, defines the area overlapped rate in the aspect of geometric measure, presents the data matching idea based on area overlapped rate .Then, this paper discusses and realizes the data matching relation of area elements including one to one , many to one and many to many. At last, region targets are set as the study object, large scale data are taken for example. We draw the conclusion: this algorithm is efficient.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Song Tian ◽  
Ximin Cui ◽  
Yu Gong

As a space-filling method, Voronoi Treemaps are used for showcasing hierarchies. Previously presented algorithms are limited to visualize nonspatial data. The approach of spatial Voronoi Treemaps is proposed in this paper to eliminate these problems by enabling the subdivisions for points, lines, and polygons with spatial coordinates and references. The digital distance transformation is recursively used to generate nested raster Voronoi polygons while the raster to vector conversion is used to create a vector-based Treemap visualization in a GIS (geographic information system) environment. The objective is to establish a spatial data model to better visualize and understand the hierarchies in the geographic field.


2012 ◽  
Vol 204-208 ◽  
pp. 4872-4877
Author(s):  
Da Xi Ma ◽  
Xiao Hong Liu ◽  
Li Wei Ma

By analyzing the attributes of three-dimensional space data model, the integrated 3D spatial data adopts object-oriented method for digital landslide modeling. It achieves spatial data modeling for landslide geological entity. An experimental case is given to indicate the feasibility of this approach for spatial data modeling.


Sign in / Sign up

Export Citation Format

Share Document