Inconsistency detection and data fusion in USAR task

2017 ◽  
Vol 34 (1) ◽  
pp. 18-32 ◽  
Author(s):  
Pei-Ju Lee ◽  
Peng-Sheng You ◽  
Yu-Chih Huang ◽  
Yi-Chih Hsieh

Purpose The historical data usually consist of overlapping reports, and these reports may contain inconsistent data, which may return incorrect results of a query search. Moreover, users who issue the query may not learn of this inconsistency even after a data cleaning process (e.g. schema matching or data screening). The inconsistency can exist in different types of data, such as temporal or spatial data. Therefore, this paper aims to introduce an information fusion method that can detect data inconsistency in the early stages of data fusion. Design/methodology/approach This paper introduces an information fusion method for multi-robot operations, for which fusion is conducted continuously. When the environment is explored by multiple robots, the robot logs can provide more information about the number and coordination of targets or victims. The information fusion method proposed in this paper generates an underdetermined linear system of overlapping spatial reports and estimates the case values. Then, the least squares method is used for the underdetermined linear system. By using these two methods, the conflicts between reports can be detected and the values of the intervals at specific times or locations can be estimated. Findings The proposed information fusion method was tested for inconsistency detection and target projection of spatial fusion in sensor networks. The proposed approach examined the values of sensor data from simulation that robots perform search tasks. This system can be expanded to data warehouses with heterogeneous data sources to achieve completeness, robustness and conciseness. Originality/value Little research has been devoted to the linear systems for information fusion of tasks of mobile robots. The proposed information fusion method minimizes the cost of time and comparison for data fusion and also minimizes the probability of errors from incorrect results.

Author(s):  
Sherong Zhang ◽  
Ting Liu ◽  
Chao Wang

Abstract Building safety assessment based on single sensor data has the problems of low reliability and high uncertainty. Therefore, this paper proposes a novel multi-source sensor data fusion method based on Improved Dempster–Shafer (D-S) evidence theory and Back Propagation Neural Network (BPNN). Before data fusion, the improved self-support function is adopted to preprocess the original data. The process of data fusion is divided into three steps: Firstly, the feature of the same kind of sensor data is extracted by the adaptive weighted average method as the input source of BPNN. Then, BPNN is trained and its output is used as the basic probability assignment (BPA) of D-S evidence theory. Finally, Bhattacharyya Distance (BD) is introduced to improve D-S evidence theory from two aspects of evidence distance and conflict factors, and multi-source data fusion is realized by D-S synthesis rules. In practical application, a three-level information fusion framework of the data level, the feature level, and the decision level is proposed, and the safety status of buildings is evaluated by using multi-source sensor data. The results show that compared with the fusion result of the traditional D-S evidence theory, the algorithm improves the accuracy of the overall safety state assessment of the building and reduces the MSE from 0.18 to 0.01%.


2020 ◽  
Vol 1 ◽  
pp. 1-15
Author(s):  
Rodrique Kafando ◽  
Rémy Decoupes ◽  
Lucile Sautot ◽  
Maguelonne Teisseire

Abstract. In this paper, we propose a methodology for designing data lake dedicated to Spatial Data and an implementation of this specific framework. Inspired from previous proposals on general data lake Design and based on the Geographic information – Metadata normalization (ISO 19115), the contribution presented in this paper integrates, with the same philosophy, the spatial and thematic dimensions of heterogeneous data (remote sensing images, textual documents and sensor data, etc). To support our proposal, the process has been implemented in a real data project in collaboration with Montpellier Métropole Méditerranée (3M), a metropolis in the South of France. This framework offers a uniform management of the spatial and thematic information embedded in the elements of the data lake.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Guangbing Zhou ◽  
Jing Luo ◽  
Shugong Xu ◽  
Shunqing Zhang ◽  
Shige Meng ◽  
...  

Purpose Indoor localization is a key tool for robot navigation in indoor environments. Traditionally, robot navigation depends on one sensor to perform autonomous localization. This paper aims to enhance the navigation performance of mobile robots, a multiple data fusion (MDF) method is proposed for indoor environments. Design/methodology/approach Here, multiple sensor data i.e. collected information of inertial measurement unit, odometer and laser radar, are used. Then, an extended Kalman filter (EKF) is used to incorporate these multiple data and the mobile robot can perform autonomous localization according to the proposed EKF-based MDF method in complex indoor environments. Findings The proposed method has experimentally been verified in the different indoor environments, i.e. office, passageway and exhibition hall. Experimental results show that the EKF-based MDF method can achieve the best localization performance and robustness in the process of navigation. Originality/value Indoor localization precision is mostly related to the collected data from multiple sensors. The proposed method can incorporate these collected data reasonably and can guide the mobile robot to perform autonomous navigation (AN) in indoor environments. Therefore, the output of this paper would be used for AN in complex and unknown indoor environments.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 993 ◽  
Author(s):  
Bin Yang ◽  
Dingyi Gan ◽  
Yongchuan Tang ◽  
Yan Lei

Quantifying uncertainty is a hot topic for uncertain information processing in the framework of evidence theory, but there is limited research on belief entropy in the open world assumption. In this paper, an uncertainty measurement method that is based on Deng entropy, named Open Deng entropy (ODE), is proposed. In the open world assumption, the frame of discernment (FOD) may be incomplete, and ODE can reasonably and effectively quantify uncertain incomplete information. On the basis of Deng entropy, the ODE adopts the mass value of the empty set, the cardinality of FOD, and the natural constant e to construct a new uncertainty factor for modeling the uncertainty in the FOD. Numerical example shows that, in the closed world assumption, ODE can be degenerated to Deng entropy. An ODE-based information fusion method for sensor data fusion is proposed in uncertain environments. By applying it to the sensor data fusion experiment, the rationality and effectiveness of ODE and its application in uncertain information fusion are verified.


2020 ◽  
Vol 26 (7) ◽  
pp. 1249-1261 ◽  
Author(s):  
Michele Moretti ◽  
Federico Bianchi ◽  
Nicola Senin

Purpose This paper aims to illustrate the integration of multiple heterogeneous sensors into a fused filament fabrication (FFF) system and the implementation of multi-sensor data fusion technologies to support the development of a “smart” machine capable of monitoring the manufacturing process and part quality as it is being built. Design/methodology/approach Starting from off-the-shelf FFF components, the paper discusses the issues related to how the machine architecture and the FFF process itself must be redesigned to accommodate heterogeneous sensors and how data from such sensors can be integrated. The usefulness of the approach is discussed through illustration of detectable, example defects. Findings Through aggregation of heterogeneous in-process data, a smart FFF system developed upon the architectural choices discussed in this work has the potential to recognise a number of process-related issues leading to defective parts. Research limitations/implications Although the implementation is specific to a type of FFF hardware and type of processed material, the conclusions are of general validity for material extrusion processes of polymers. Practical implications Effective in-process sensing enables timely detection of process or part quality issues, thus allowing for early process termination or application of corrective actions, leading to significant savings for high value-added parts. Originality/value While most current literature on FFF process monitoring has focused on monitoring selected process variables, in this work a wider perspective is gained by aggregation of heterogeneous sensors, with particular focus on achieving co-localisation in space and time of the sensor data acquired within the same fabrication process. This allows for the detection of issues that no sensor alone could reliably detect.


Sensors ◽  
2017 ◽  
Vol 17 (12) ◽  
pp. 2822 ◽  
Author(s):  
Chaoyang Shi ◽  
Bi Yu Chen ◽  
William H. K. Lam ◽  
Qingquan Li

2011 ◽  
Vol 460-461 ◽  
pp. 404-408
Author(s):  
Yue Shun He ◽  
Jun Zhang ◽  
Jie He

This paper mainly analyzed the principle of multi-source spatial data fusion, and expounded the multi-source spatial data fusion of the distributed model structure. The paper considers a distributed multi-sensor information fusion system factors, A performance evaluation model was established which was suitable for distributed multi-sensor information fusion system, It can estimate the system's precision, track quality, filtering quality, and the relevant between Navigation Paths and so on. Meanwhile, we had a lot of experiments by the datum which generated by the simulation test environment, experiments show that this evaluation model is valid.


2012 ◽  
Vol 29 (1-2) ◽  
pp. 148-157 ◽  
Author(s):  
Zhen Zhang ◽  
Lizhong Xu ◽  
Harry Hua Li ◽  
Aiye Shi ◽  
Hua Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document