3-D Simulation of H-Beam Multi-Pass Hot Rolling and Microstructure Evolution

2012 ◽  
Vol 268-270 ◽  
pp. 297-300
Author(s):  
Qing Qiang He ◽  
Jia Sun ◽  
Jun You Zhao ◽  
Li Jian Xu ◽  
Cui Cui Li

In hot metal forming processes, the material is subjected to the thermo-mechanical processing. A fully three dimensional thermo-mechanically coupled FEM-simulation of an eleven pass hot rough rolling process of H-beam has been performed. Microstructure evolution equations available in literatures were incorporated into the commercial FE solver ABAQUS/Explicit, through user defined subroutine VUMAT, to simulate the microstructure evolution. Since it’s impractical to obtain the austenite grain size distribution in the beam blank during industrial hot rolling, the calculated rolling loads are compared with the mills loads instead of grain size comparison between the predicted average value and the real ones.

2021 ◽  
Vol 1016 ◽  
pp. 1733-1738
Author(s):  
Li Wen Zhang ◽  
Fei Li ◽  
Chi Zhang ◽  
Pei Gang Mao ◽  
Chao Qun Li

In this paper, the microstructure evolution during continuous hot rolling process of GCr15 steel rod was investigated. A series of multi-field coupled finite element models were established based on commercial finite element software MSC.Marc. The kinetics equations of austenite grain size evolution of GCr15 steel were coupled to these models by a designed MSC.Marc subprogram. The field variables, including temperature, equivalent stress, equivalent strain, and equivalent strain rate, were calculated. The distributions of dynamic recrystallization, metadynamic recrystallization, and static recrystallization fractions were investigated. The distribution and evolution of austenite grain size at different stages in the continuous hot rolling process were analyzed. To verify the models, the temperatures of GCr15 steel rod at different stages in the continuous hot rolling process were measured. And the austenite grain sizes at cross section of the rod after the continuous hot rolling process were measured. The simulation results show a good agreement with the experimental results.


2013 ◽  
Vol 652-654 ◽  
pp. 2024-2028
Author(s):  
Wen Ping Liu ◽  
B. Zhang ◽  
Pei Qi Wang ◽  
Qin He Zhang

To improve the product properties of H-beams, it is essential to understand the effects of hot rolling parameters on the microstructure evolution of the beams. For this purpose, a thermo mechanical model was built with the finite element Package ABAQUS. By re-meshing the model, multipass large-deformation hot rolling process was simulated under the boundary conditions predefined in accordance with the practical production. Based on the hot rolling simulation, an impact analysis of strain rate, initial rough rolling temperature, and time interval between passes on the microstructure evolution of H-beam austenite was conducted. The analytical results are meaningful for optimizing hot rolling parameters and improving H-beam properties.


2011 ◽  
Vol 291-294 ◽  
pp. 449-454 ◽  
Author(s):  
Fuan Hua ◽  
Chao Yi Zhang ◽  
Qiang Li ◽  
Bao Yi Yu ◽  
Wei Hua Liu ◽  
...  

In order to optimize rolling process of AM50 Mg alloy, numerical simulation method is adopted to find reasonable process parameters. And then, the metallograph was viewed to find the microstructure evolution during hot rolling process. Through numerical simulation it is found that while the heating temperature is 420 and the train less than 0.33 each time. Through 10 times rolling, a 10mm thickness plate was rolled to 0.5mm, and its grain size also decreases to 10μm, which indicates that AM50 Mg alloy can be formed by hot rolling method.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2356
Author(s):  
Yina Zhao ◽  
Yinli Chen ◽  
He Wei ◽  
Jiquan Sun ◽  
Wei Yu

The partitioning and diffusion of solute elements in hot rolling and the effect of the partitioning and diffusion on the ferrite-bainite banding formation after hot rolling in the 20CrMnTi steel were experimentally examined by EPMA (electron probe microanalysis) technology and simulated by DICTRTA and MATLAB software. The austenite grain size related to the hot rolling process and the effect of austenite grain size on the ferrite-bainite banding formation were studied. The results show that experimental steel without banding has the most uniform hardness distribution, which is taken from the edge of the cast slab and 1/4 diameter position of the cast slab, heating at 1100 °C for 2 h and above 1200 °C for 2–4 h during the hot rolling, respectively. Cr, Mn, and Si diffuse and inhomogeneously concentrate in austenite during hot rolling, while C homogeneously concentrates in austenite. After the same hot rolling process, ΔAe3 increases and ferrite-bainite banding intensifies with increasing initial segregation width and segregation coefficient K of solute elements. Under the same initial segregation of solute elements, ΔAe3 drops and ferrite-bainite banding reduces with increasing heating temperature and extension heating time. When ΔAe3 drops below 14 °C, ferrite-bainite banding even disappears. What is more, the austenite grain size increases with increasing heating temperature and extension heating time. When the austenite grain size is above 21 μm, the experimental steel will not appear to have a banded structure after hot rolling.


2011 ◽  
Vol 399-401 ◽  
pp. 1654-1657
Author(s):  
Min Zhu ◽  
An Chao Ren ◽  
Yu Ji

Precipitated phase of microalloyed H beam was analysed by TEM and electrolyzation. Effect of heating temperature on austenite grain size and solid solution of Nb in steel and effect of finishing rolling temperature on property of tested steel were studied. According to the results, controlled rolling process was determined to produce the hot-rolled. Property of H beam includes that yield strength is 410MPa~430MPa, and charpy impact energy at -20°C is greater than 50J. The ferrite grain size number is 11. All of the properties are up to the American Petroleum Institute standard of H beam for offshore platforms.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2947
Author(s):  
Xian Lin ◽  
Xinyi Zou ◽  
Dong An ◽  
Bruce W. Krakauer ◽  
Mingfang Zhu

In this work, a 6-pass hot-rolling process followed by air cooling is studied by means of a coupled multi-scale simulation approach. The finite element method (FEM) is utilized to obtain macroscale thermomechanical parameters including temperature and strain rate. The microstructure evolution during the recrystallization and austenite (γ) to ferrite (α) transformation is simulated by a mesoscale cellular automaton (CA) model. The solute drag effect is included in the CA model to take into account the influence of manganese on the γ/α interface migration. The driving force for α-phase nucleation and growth also involves the contribution of the deformation stored energy inherited from hot-rolling. The simulation renders a clear visualization of the evolving grain structure during a multi-pass hot-rolling process. The variations of the nonuniform, deformation-stored energy field and carbon concentration field are also reproduced. A detailed analysis demonstrates how the parameters, including strain rate, grain size, temperature, and inter-pass time, influence the different mechanisms of recrystallization. Grain refinement induced by recrystallization and the γα phase transformation is also quantified. The simulated final α-fraction and the average α-grain size agree reasonably well with the experimental microstructure.


2013 ◽  
Vol 395-396 ◽  
pp. 342-347
Author(s):  
Bin Shen ◽  
Song He Zhu ◽  
Heng Hua Zhang

Based on a improved mathematic model of predicting austenite grain size of hot rolled Nb-Ti micro-alloyed steel, a module for calculating microstructure evolution in the steel during hot-forming process was developed. To evaluate the recrystallization behavior according to the proposed model during plate multi-pass hot rolling, the multi-pass hot compression and its FE analysis in couple with the newly determined model were conducted. It indicated that the present models were capable of simulating the multi-pass hot compression and the actual multi-pass rolling process. After simulating an actual rolling process in factory by using the above models, evolution laws of microstructure were analyzed. Simulation results of microstructure had a good agreement with the measured ones.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 569
Author(s):  
Ana Claudia González-Castillo ◽  
José de Jesús Cruz-Rivera ◽  
Mitsuo Osvaldo Ramos-Azpeitia ◽  
Pedro Garnica-González ◽  
Carlos Gamaliel Garay-Reyes ◽  
...  

Computational simulation has become more important in the design of thermomechanical processing since it allows the optimization of associated parameters such as temperature, stresses, strains and phase transformations. This work presents the results of the three-dimensional Finite Element Method (FEM) simulation of the hot rolling process of a medium Mn steel using DEFORM-3D software. Temperature and effective strain distribution in the surface and center of the sheet were analyzed for different rolling passes; also the change in damage factor was evaluated. According to the hot rolling simulation results, experimental hot rolling parameters were established in order to obtain the desired microstructure avoiding the presence of ferrite precipitation during the process. The microstructural characterization of the hot rolled steel was carried out using optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the phases present in the steel after hot rolling are austenite and α′-martensite. Additionally, to understand the mechanical behavior, tensile tests were performed and concluded that this new steel can be catalogued in the third automotive generation.


2011 ◽  
Vol 381 ◽  
pp. 72-75
Author(s):  
Bin Li

This paper investigates the interfacial slip between the forming tool and workpiece in a relatively new metal forming process, cross-wedge rolling. Based on the finite elements method, three-dimensional mechanical model of cross wedge rolling process has been developed. Examples of numerical simulation for strain, stress distributions and rolling load components have been included. The main advantages of the finite element method are: the capability of obtaining detailed solutions of the mechanics in a deforming body, namely, stresses, shapes, strains or contact pressure distributions; and the computer codes, can be used for a large variety of problems by simply changing the input data.


Sign in / Sign up

Export Citation Format

Share Document