Numerical Simulation of Quenchant Flow Characteristics in Large Quench Tank

2012 ◽  
Vol 271-272 ◽  
pp. 1372-1376
Author(s):  
Hui Sun

The computational fluid dynamics (CFD) technique is employed to predict the flow of quenchant in a large quench tank. The characteristics of flow field in the existing quench tank are investigated, and the major deficiency occurred in the tank structure design is analyzed. Two different schemes for improving the tank structure design are brought forward, and further numerical simulations are carried out. Results show that the non-uniform flow field is generated throughout the quenching zone in the existing large quench tank. There is clear difference in flow rate in the regions near the inner surface of workpiece and the outer, which may cause the workpiece distortion and even cracking. Reduction in ring pipe intermediate diameter can not obviously enhance the uniformity of flow field in the quench tank. By adding an inner core in the center zone of the tank, the flow rate in the region near the inner surface of workpiece can be increased effectively, and the flow rate difference found in the quenching zone reduced significantly, which are beneficial to guarantee the quenching quality of workpiece.

2013 ◽  
Vol 645 ◽  
pp. 501-504
Author(s):  
Hui Sun

According to the major design deficiency of the existing tank, the computational fluid dynamics (CFD) technique is adopted to simulate the flow field in the large quench tank, and two optimum schemes are brought forward. Further more, the influence of different mixer systems on the flow field in the large quench tank is analyzed. Simulation Results show that the non-uniform flow field is generated throughout the quenching zone in the existing large quench tank, and the flow rate of the quenchant is rather low, which may lead to the workpiece insufficient and non-uniform cooling rate. Setting an inner core in the center zone of the tank increases the flow rate in the region near the inner surface of workpiece. Using the submersible impellers, the flow of the quenchant in the region near the outer surface of workpiece significantly strengthened. There is parallel relation between the flux of the inner core and that of the submersible impeller.


2012 ◽  
Vol 472-475 ◽  
pp. 2000-2003
Author(s):  
Jin Long Meng ◽  
Zhao Qin Yin

The flow characteristics in mini/micro sonic nozzles have been studied in this paper using the computational fluid dynamics (CFD) method. The result shows that the flow rate of the parallel combined nozzles is not equal to but smaller than that of the sum of the nozzles. The reason is the each effect of the air after nozzles, which changes the flow field parameters .The more number of the parallel combined nozzles, the bigger error exits between actual flow rate and that of the sum of the nozzles. The result is consistent to the experiment. The study also shows the smaller of the nozzle’s diameter, the bigger error exits.


2013 ◽  
Vol 448-453 ◽  
pp. 3847-3850
Author(s):  
Da Li ◽  
Fang Qin Cheng ◽  
Jian Feng Li ◽  
Yun Shan Guan

Despite the widespread use of hydrocyclone in the process of potash ore desliming, its accurate design is often difficult because the feed composition is complicated and the viscosity is high in the brine system. In this study, a numerical approach based on computational fluid dynamics (CFD) was performed to describe the flow field. The numerical simulation of flow pattern in hydrocyclones for potash ore desliming was presented. Some basic information concerning the velocity and pressure distribution is given, and the results can be used as the fundamental basis for its design.


2021 ◽  
Vol 9 ◽  
Author(s):  
Houjun Gong ◽  
Mengqi Wu

Marine reactors are subjected to additional motions due to ocean conditions. These additional motions will cause large fluctuation of flow rate and change the coolant flow field, making the system unstable. Therefore, in order to understand the effect of oscillating motion on the flow characteristics, a numerical simulation of fluid flow is carried out based on a full-scale three-dimensional oscillating marine reactor. In this study, the resistance coefficients of the lattice, rod buddle and steam generator are fitted, and the distribution of flow rate, velocity as well as pressure in different regions is investigated through the standard model. After additional oscillation is introduced, the flow field in an oscillating reactor is presented and the effect of oscillating angle and elevation on the flow rate is investigated. Results show that the oscillating motion can greatly change the flow field in the reactor; most of the coolant circulates in the downcommer and lower head with only a small amount of coolant entering the core; the flow fluctuation period is consistent with the oscillating period, and the flow variation patterns under different oscillating conditions are basically the same; since the flow amplitude is related to oscillating speed, the amplitude of flow rate rises when decreasing the maximum oscillating angle; the oscillating elevation has little effect on the flow rate.


2019 ◽  
Vol 70 (3) ◽  
pp. 902-905
Author(s):  
Galina Marusic ◽  
Valeriu Panaitescu

This paper addresses issues related to the determination of hydrodynamics of aquatic systems, with the application of computational fluid dynamics (CFD) analysis. The importance of knowing the hydrodynamics of aquatic systems for solving water pollution problems, as well as their prevention, is discussed. A case study regarding the determination of the water flow characteristics using CFD for some sectors of the Prut river is presented.


2006 ◽  
Vol 118 ◽  
pp. 363-368 ◽  
Author(s):  
Nai Lu Chen ◽  
Wei Min Zhang ◽  
Qiang Li ◽  
Chang Yin Gao ◽  
Bo Liao ◽  
...  

In order to investigate the flow rate distribution and improve the flow rate uniformity of the quenchant in a quench tank, the ultrasonic Doppler velocimeter (UDV) was used to measure the flow rate of quenchant with agitation, and then a computational fluid dynamics (CFD) simulation was carried out to simulate the flow rate distribution without / with flow baffles. According to the CFD simulation results, the structures and positions of flow baffles in the draft-tube were optimized to obtain the uniform flow rate distribution in the quench zone, which were verified by experiments as well. The simulation and experimental results show that the UDV is suitable for measuring the flow rate of a large-size quench tank. This research provided a solid foundation for optimizing the structure design of flow baffles in production quench tanks.


2013 ◽  
Vol 353-356 ◽  
pp. 2993-2996 ◽  
Author(s):  
Tao Tao Shui ◽  
Jing Liu ◽  
Fei Ma

In order to investigate natural cross-ventilation in buildings, computational fluid dynamics (CFD) with the DES model is applied. The aim of this paper is to investigate the influence of surrounding buildings on natural ventilation in target building under different separation distances. The simulation results indicate that surrounding buildings has a significant impact on airflow structure and airflow rate of the target building. The flow characteristics in target building is determined by the flow regime in street canyon.


2005 ◽  
Vol os-14 (1) ◽  
pp. 1558925005os-14
Author(s):  
Holly M. Krutka ◽  
Robert L. Shambaugh ◽  
Dimitrios V. Papavassiliou

This paper is an investigation of the flow fields generated by dual rectangular jets. Specifically, the jets examined are the same as the common slot dies used in the industrial melt blowing process. In this process, a molten polymer is attenuated by air discharging from dual jets. The velocity and turbulence of these flow fields determine the rate and quality of polymer fiber production. The flow field characteristics can be simulated quickly and efficiently using computational fluid dynamics (CFD). These CFD simulations require the use of an appropriate length scale to describe the flow field. This paper describes how these CFD simulations can be used to compare the flow fields generated by different jet geometries.


2014 ◽  
Vol 1030-1032 ◽  
pp. 819-822
Author(s):  
Xiu Guo Zhao ◽  
Xin Xi Xu ◽  
Chen Su ◽  
Fu Niu ◽  
Shu Lin Tan ◽  
...  

The computational fluid dynamics (CFD) is used to design the position of the inlet and outlet of the air conditioning and analyzing the air flow field and temperature distribution inside the operating room .The result showed the purification air conditioning of the mobile operating room can make air flow along only single direction with effectively avoiding the contamination gathering in the surgical area. It also can improve air cleanness of surgical area and fight against the infection of the patient wound. In the surgical area, the temperature is distributed around 23°C with perfect temperature distribution without obviously temperature gradient.


2015 ◽  
Vol 713-715 ◽  
pp. 602-605
Author(s):  
Zhu Jue Tong ◽  
Xiao Ling Wang ◽  
Kai Zhang ◽  
Shu Xing Wu

In the present study, the effects of ventilator geometries on the its performance were numerically simulated using the computational fluid dynamics (CFD) program. For a certain type ventilator, three-dimensional inner flow field was derived firstly, such as local flow field at the meridional and rotary plane of ventilator, the gap flow between the impeller and air outlet, and the secondary flows in impeller channel were studied in detail, and some suggestions are given to improve the profile of velocity. The above results would be helpful to the optimization and modification of ventilator.


Sign in / Sign up

Export Citation Format

Share Document