Numerical Investigation on Improvement of Flow Field Structure in Large Quench Tank

2013 ◽  
Vol 645 ◽  
pp. 501-504
Author(s):  
Hui Sun

According to the major design deficiency of the existing tank, the computational fluid dynamics (CFD) technique is adopted to simulate the flow field in the large quench tank, and two optimum schemes are brought forward. Further more, the influence of different mixer systems on the flow field in the large quench tank is analyzed. Simulation Results show that the non-uniform flow field is generated throughout the quenching zone in the existing large quench tank, and the flow rate of the quenchant is rather low, which may lead to the workpiece insufficient and non-uniform cooling rate. Setting an inner core in the center zone of the tank increases the flow rate in the region near the inner surface of workpiece. Using the submersible impellers, the flow of the quenchant in the region near the outer surface of workpiece significantly strengthened. There is parallel relation between the flux of the inner core and that of the submersible impeller.

2012 ◽  
Vol 271-272 ◽  
pp. 1372-1376
Author(s):  
Hui Sun

The computational fluid dynamics (CFD) technique is employed to predict the flow of quenchant in a large quench tank. The characteristics of flow field in the existing quench tank are investigated, and the major deficiency occurred in the tank structure design is analyzed. Two different schemes for improving the tank structure design are brought forward, and further numerical simulations are carried out. Results show that the non-uniform flow field is generated throughout the quenching zone in the existing large quench tank. There is clear difference in flow rate in the regions near the inner surface of workpiece and the outer, which may cause the workpiece distortion and even cracking. Reduction in ring pipe intermediate diameter can not obviously enhance the uniformity of flow field in the quench tank. By adding an inner core in the center zone of the tank, the flow rate in the region near the inner surface of workpiece can be increased effectively, and the flow rate difference found in the quenching zone reduced significantly, which are beneficial to guarantee the quenching quality of workpiece.


2013 ◽  
Vol 368-370 ◽  
pp. 619-623
Author(s):  
Zhen Liu ◽  
Xiao Ling Wang ◽  
Ai Li Zhang

For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground main powerhouse is simulated by the computational fluid dynamics (CFD) to optimize ventilation parameters. A 3D unsteady RNG k-ε model is performed for construction ventilation in the underground main powerhouse. The air-flow field and CO diffusion in the main powerhouse are simulated and analyzed. The two construction ventilation schemes are modelled for the main powerhouse. The optimized ventilation scheme is obtained by comparing the air volume and pressure distributions of the different ventilation schemes.


2017 ◽  
Vol 77 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Haoming Yang ◽  
David Z. Zhu ◽  
Yanchen Liu

Abstract Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


Author(s):  
Hasham H. Chougule ◽  
Alexander Mirzamoghadam

The objective of this study is to develop a Computational Fluid Dynamics (CFD) based methodology for analyzing and predicting leakage of worn or rub-intended labyrinth seals during operation. The simulations include intended tooth axial offset and numerical modeling of the flow field. The purpose is to predict total leakage through the seal when an axial tooth offset is provided after the intended/unintended rub. Results indicate that as expected, the leakage for the in-line worn land case (i.e. tooth under rub) is higher compared to unworn. Furthermore, the intended rotor/teeth forward axial offset/shift with respect to the rubbed land reduces the seal leakage. The overall leakage of a rubbed seal with axial tooth offset is observed to be considerably reduced, and it can become even less than a small clearance seal designed not to rub. The reduced leakage during steady state is due to a targeted smaller running gap because of tooth offset under the intended/worn land groove shape, higher blockages, higher turbulence and flow deflection as compared to worn seal model without axial tooth offset.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


2015 ◽  
Author(s):  
Brent S. Paul

The successful integration of aviation capabilities aboard ships is a complex endeavor that must balance ship design with the flight envelope of the helicopter. This can be particularly important when considering air wakes and other flow around the superstructure as it impacts the flight deck. This flow can generate unsteady structures that may interfere with safe helicopter operations. Computational fluid dynamics (CFD) is commonly used to characterize the flow field and assess potential impacts to the flight envelope, which can be used to help define an operating envelope for helicopter operations.


Author(s):  
Melih Demir ◽  
Govert de With ◽  
Arne E. Holdo̸

At present a large number of fluid dynamics applications are found in aerospace, civil and automotive engineering, as well in medical related fields. In many applications the flow field is turbulent and the computational modelling of such flows remains a difficult task. To resolve all turbulent flow phenomena for flow problems where turbulence is of key interest is a priori not feasible in a Computational Fluid Dynamics (CFD) investigation with a conventional mesh. The use of a Dynamic Grid Adaptation (DGA) algorithm in a turbulent unsteady flow field is an appealing technique which can reduce the computational costs of a CFD investigation. A refinement of the numerical domain with a DGA algorithm requires reliable criteria for mesh refinement which reflect the complex flow processes. At present not much work has been done to obtain reliable refinement criteria for turbulent unsteady flow. The purpose of the work is to implement a new refinement technique for the boundary layer in the vicinity of the wall. It is aimed to model the flow around an airfoil with a LES turbulence model and a new DGA algorithm. In addition to that several simulations have been carried out for parametric studies. In these studies the incompressible solver in REACFLOW has been used. This Computational Fluid Dynamics (CFD) code REACFLOW was developed in collaboration with the joint Research Centre (JRC) in Italy. The following aims are aspired: • A new mesh refinement criteria method suitable for boundary layers; • To carry out LES simulations to establish the performance of the refinement criteria. The new criteria which are created in this work are for the near wall region. This criteria uses the wall shear stresses for the refinement technique. For the main flow stream the refinement criteria proposed by de With et al [6] will be used.


Author(s):  
M. Alfaro Cano ◽  
A. Hernandez-Guerrero ◽  
C. Rubio Arana ◽  
Aristotel Popescu

One of the requirements for existing personal computers, PCs, is that the hardware inside must maintain an operating temperature as low as possible. One way to achieve that is to place the hardware components at locations with enough airflow around it. However, the relationship between the airflow and temperature of the components is unknown before they are placed at specific locations inside a PC. In this work a Computational Fluid Dynamics (CFD) analysis is coupled to a Design of Experiment (DOE) methodology to answer typical minitower key questions: a) how do the possible positions of hardware components affect their temperature?, and b) is it possible to get an optimal placement for these hardware components using the data collected by the CFD simulation results? The DOE methodology is used to optimize the analysis for a very large number of possible configurations. The results help in identifying where the efforts need to be placed in order to optimize the positioning of the hardware components for similar configurations at the designing stage. Somehow the results show that general conclusions could be drawn, but that there are not specific rules that could be applied to every configuration.


Sign in / Sign up

Export Citation Format

Share Document